论文标题
高$^2 $损失:超出多标签图像检索超出超级球的度量空间
HyP$^2$ Loss: Beyond Hypersphere Metric Space for Multi-label Image Retrieval
论文作者
论文摘要
图像检索已成为一种越来越有吸引力的技术,具有广泛的多媒体应用前景,在该技术中,深层哈希是朝着低存储和有效检索的主要分支。在本文中,我们在深度散列中进行了深入研究,以在多标签场景中建立强大的度量空间,其中两人的损失遭受了高的计算开销和汇聚难度,而代理损失理论上无能为力,无法表达深刻的标签依赖性和在构造的超透明空间中表现出冲突。为了解决这些问题,我们提出了一个新颖的度量学习框架,该框架具有混合代理损失(hyt $^2 $损失),该框架构建了具有高效训练复杂性W.R.T.的表现力度量空间。整个数据集。提出的催眠$^2 $损失着重于通过可学习的代理和挖掘无关的数据与数据相关性来优化超晶体空间,从而整合了基于配对方法的足够数据对应关系和基于代理方法的高效效率。在四个标准的多标签基准上进行的广泛实验证明,所提出的方法的表现优于最先进的方法,在不同的哈希位之间是可靠的,并且可以以更快,更稳定的收敛速度实现显着的性能增长。我们的代码可从https://github.com/jerryxu0129/hyp2-loss获得。
Image retrieval has become an increasingly appealing technique with broad multimedia application prospects, where deep hashing serves as the dominant branch towards low storage and efficient retrieval. In this paper, we carried out in-depth investigations on metric learning in deep hashing for establishing a powerful metric space in multi-label scenarios, where the pair loss suffers high computational overhead and converge difficulty, while the proxy loss is theoretically incapable of expressing the profound label dependencies and exhibits conflicts in the constructed hypersphere space. To address the problems, we propose a novel metric learning framework with Hybrid Proxy-Pair Loss (HyP$^2$ Loss) that constructs an expressive metric space with efficient training complexity w.r.t. the whole dataset. The proposed HyP$^2$ Loss focuses on optimizing the hypersphere space by learnable proxies and excavating data-to-data correlations of irrelevant pairs, which integrates sufficient data correspondence of pair-based methods and high-efficiency of proxy-based methods. Extensive experiments on four standard multi-label benchmarks justify the proposed method outperforms the state-of-the-art, is robust among different hash bits and achieves significant performance gains with a faster, more stable convergence speed. Our code is available at https://github.com/JerryXu0129/HyP2-Loss.