论文标题
水下排名:学习哪个更好,如何变得更好
Underwater Ranker: Learn Which Is Better and How to Be Better
论文作者
论文摘要
在本文中,我们提出了一种基于排名的水下图像质量评估(UIQA)方法,该方法缩写为Uranker。尿路群落建立在高效的注意力图像变压器上。在水下图像方面,我们特别设计(1)直方图嵌入了水下图像作为直方图表的颜色分布以参加全局降解,以及(2)与模型局部降解的动态跨尺度对应关系。最终预测取决于不同量表的类代币,这全面考虑了多尺度的依赖性。随着保证金排名损失,我们的乌员可以根据其视觉质量通过不同的水下图像增强(UIE)算法来准确对同一场景的水下图像的顺序进行排名。为了实现这一目标,我们还贡献了一个数据集,即urankerset,其中包含不同的UIE算法和相应的感知排名增强的足够结果,以训练我们的Uranker。除了Uranker的良好表现外,我们发现一个简单的U-Shape UIE网络与我们的预训练的Uranker相结合时可以获得有希望的性能。此外,我们还提出了一个标准化尾巴,可以显着提高UIE网络的性能。广泛的实验证明了我们方法的最新性能。讨论了我们方法的关键设计。我们将发布我们的数据集和代码。
In this paper, we present a ranking-based underwater image quality assessment (UIQA) method, abbreviated as URanker. The URanker is built on the efficient conv-attentional image Transformer. In terms of underwater images, we specially devise (1) the histogram prior that embeds the color distribution of an underwater image as histogram token to attend global degradation and (2) the dynamic cross-scale correspondence to model local degradation. The final prediction depends on the class tokens from different scales, which comprehensively considers multi-scale dependencies. With the margin ranking loss, our URanker can accurately rank the order of underwater images of the same scene enhanced by different underwater image enhancement (UIE) algorithms according to their visual quality. To achieve that, we also contribute a dataset, URankerSet, containing sufficient results enhanced by different UIE algorithms and the corresponding perceptual rankings, to train our URanker. Apart from the good performance of URanker, we found that a simple U-shape UIE network can obtain promising performance when it is coupled with our pre-trained URanker as additional supervision. In addition, we also propose a normalization tail that can significantly improve the performance of UIE networks. Extensive experiments demonstrate the state-of-the-art performance of our method. The key designs of our method are discussed. We will release our dataset and code.