论文标题
多属性开放式识别
Multi-Attribute Open Set Recognition
论文作者
论文摘要
通过同时对已知类别进行分类并识别未知类别,将图像分类扩展到开放世界设置。尽管常规的OSR方法可以检测到分布(OOD)样本,但它们无法提供说明,表明哪些基本视觉属性(例如,形状,颜色或背景)导致特定样本未知。在这项工作中,我们介绍了一个新的问题设置,该设置将常规OSR推广到多属性设置,其中同时识别了多个视觉属性。在这里,不仅可以识别OOD样本,而且可以按其未知属性进行分类。我们提出了简单的常见OSR基线的扩展,以处理这种新颖的情况。我们表明,当培训数据集中存在虚假相关性时,这些基准很容易受到捷径。这导致OOD性能差,根据我们的实验,这主要是由于预测的置信度得分的意外交叉分类相关性。我们提供了一个经验证据,表明这种行为在合成和现实世界数据集的不同基准中是一致的。
Open Set Recognition (OSR) extends image classification to an open-world setting, by simultaneously classifying known classes and identifying unknown ones. While conventional OSR approaches can detect Out-of-Distribution (OOD) samples, they cannot provide explanations indicating which underlying visual attribute(s) (e.g., shape, color or background) cause a specific sample to be unknown. In this work, we introduce a novel problem setup that generalizes conventional OSR to a multi-attribute setting, where multiple visual attributes are simultaneously recognized. Here, OOD samples can be not only identified but also categorized by their unknown attribute(s). We propose simple extensions of common OSR baselines to handle this novel scenario. We show that these baselines are vulnerable to shortcuts when spurious correlations exist in the training dataset. This leads to poor OOD performance which, according to our experiments, is mainly due to unintended cross-attribute correlations of the predicted confidence scores. We provide an empirical evidence showing that this behavior is consistent across different baselines on both synthetic and real world datasets.