论文标题
切线束的外部力量的积极性
Positivity of the exterior power of the tangent bundles
论文作者
论文摘要
令$ x $成为一个复杂的光滑投射品种,以使切线束的外部功率$ \ bigwedge^{r} t_x $是nef,对于某些$ 1 \ leq r <\ dim x $。我们证明,最多可以使用典范的封面,$ x $是阿贝里安品种上的狂热纤维空间。这给出了DeMailly,Peternell和Schneider的Nef切线束的结构定理的概括,以及用Nef $ \ bigWedge^{2} t_x $的品种的概括。我们的结果还为Li,Ou和Yang提出的问题提供了一个答案。
Let $X$ be a complex smooth projective variety such that the exterior power of the tangent bundle $\bigwedge^{r} T_X$ is nef for some $1\leq r<\dim X$. We prove that, up to an étale cover, $X$ is a Fano fiber space over an Abelian variety. This gives generalizations of the structure theorem of varieties with nef tangent bundle by Demailly, Peternell and Schneider and that of varieties with nef $\bigwedge^{2} T_X$ by the author. Our result also gives an answer to a question raised by Li, Ou and Yang for varieties with strictly nef $\bigwedge^{r} T_X$ when $r < \dim X$.