论文标题

基于变压器的医疗图像分析的最新进展

Recent Progress in Transformer-based Medical Image Analysis

论文作者

Liu, Zhaoshan, Lv, Qiujie, Yang, Ziduo, Li, Yifan, Lee, Chau Hung, Shen, Lei

论文摘要

变压器主要用于自然语言处理领域。最近,它已被采用,并显示了计算机视觉(CV)领域的承诺。作为简历的关键分支,医学图像分析(MIA)也从这种最新技术中受益匪浅。在这篇综述中,我们首先回顾了变压器的核心组成部分,注意机制和变压器的详细结构。之后,我们描绘了变压器在MIA领域的最新进展。我们以一系列不同的任务来组织应用程序,包括分类,分割,字幕,注册,检测,增强,定位和综合。主流分类和分割任务进一步分为11个医学图像方式。本综述中研究的大量实验表明,基于变压器的方法通过与多个评估指标进行比较来优于现有方法。最后,我们讨论了该领域的公开挑战和未来机会。此任务模式审查具有最新内容,详细信息和全面比较,可能会极大地使广泛的MIA社区受益。

The transformer is primarily used in the field of natural language processing. Recently, it has been adopted and shows promise in the computer vision (CV) field. Medical image analysis (MIA), as a critical branch of CV, also greatly benefits from this state-of-the-art technique. In this review, we first recap the core component of the transformer, the attention mechanism, and the detailed structures of the transformer. After that, we depict the recent progress of the transformer in the field of MIA. We organize the applications in a sequence of different tasks, including classification, segmentation, captioning, registration, detection, enhancement, localization, and synthesis. The mainstream classification and segmentation tasks are further divided into eleven medical image modalities. A large number of experiments studied in this review illustrate that the transformer-based method outperforms existing methods through comparisons with multiple evaluation metrics. Finally, we discuss the open challenges and future opportunities in this field. This task-modality review with the latest contents, detailed information, and comprehensive comparison may greatly benefit the broad MIA community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源