论文标题

由不均匀的单数l {é} vy噪声驱动的SDE的漂移减少方法

Drift reduction method for SDEs driven by inhomogeneous singular L{é}vy noise

论文作者

Kulczycki, Tadeusz, Kulyk, Oleksii, Ryznar, Michał

论文摘要

我们研究sde $$ d x_t = b(x_t)\,dt + a(x_ {t-})\,d z_t,\ quad x_ {0} = x \ in \ in \ in \ mathbb {r}^d,\ quad quad t \ quad t \ geq 0 $ z =( i = 1,\ dots,d $是独立的一维对称跳跃过程,不一定是分布的。特别是,当每个$ z^i $都是一维对称$α_i$稳定过程($α_i\ in(0,2)$,它们不一定是相等的)。 根据$ b $,$ a $和$ z $的某些假设,我们表明,SDE的弱解决方案是唯一定义的,Markov,我们提供了过渡概率密度的表示,并建立了相应的过渡半群的h {Ö} lder规律性。 我们提出的方法是基于将漂移项的SDE降低到另一个SDE,而没有这样的术语,但取决于时间变量的系数。这种方法具有经典特征方法具有相同的精神,并且似乎具有独立的兴趣。

We study SDE $$ d X_t = b(X_t) \, dt + A(X_{t-}) \, d Z_t, \quad X_{0} = x \in \mathbb{R}^d, \quad t \geq 0 $$ where $Z=(Z^1, \dots, Z^d)^T$, with $Z^i, i=1,\dots, d$ being independent one-dimensional symmetric jump Lévy processes, not necessarily identically distributed. In particular, we cover the case when each $Z^i$ is one-dimensional symmetric $α_i$-stable process ($α_i \in (0,2)$ and they are not necessarily equal). Under certain assumptions on $b$, $A$ and $Z$ we show that the weak solution to the SDE is uniquely defined and Markov, we provide a representation of the transition probability density and we establish H{ö}lder regularity of the corresponding transition semigroup. The method we propose is based on a reduction of an SDE with a drift term to another SDE without such a term but with coefficients depending on time variable. Such a method have the same spirit with the classic characteristic method and seems to be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源