论文标题

三人游戏训练动态

Three-Player Game Training Dynamics

论文作者

Christofferson, Kenneth, Yanez, Fernando J.

论文摘要

这项工作探讨了三人游戏训练动力,在哪个条件下,三人游戏融合并融合了平衡。与先前的工作相反,我们研究了三人游戏架构,所有玩家都明确地相互互动。先前的工作分析了游戏,其中三个代理只与另一个玩家互动,构成了双重玩家游戏。我们使用简化的双线性平滑游戏的扩展版本探索了三人游戏训练动力学,称为简化的三线性平滑游戏。我们发现,在大多数情况下,三连金游戏不会在NASH平衡上融合,而是在固定点上汇聚,这对于两个玩家来说是最佳的,但对于第三个玩家而言却不是。此外,我们探讨了更新的顺序如何影响融合。除了交替和同时更新外,我们还探索了一个新的更新订单 - 最大化器优先 - 仅在三人游戏中才有可能。我们发现,三人游戏可以使用最大化器优先更新在NASH平衡上收敛。最后,我们在所有三个更新订单下都在三联表现平滑游戏中为每个玩家的动量值不同,并表明最大化器优先更新在一组比其他更新订单的较大的播放器动量值三合会中获得了更最佳的结果。

This work explores three-player game training dynamics, under what conditions three-player games converge and the equilibria the converge on. In contrast to prior work, we examine a three-player game architecture in which all players explicitly interact with each other. Prior work analyzes games in which two of three agents interact with only one other player, constituting dual two-player games. We explore three-player game training dynamics using an extended version of a simplified bilinear smooth game, called a simplified trilinear smooth game. We find that trilinear games do not converge on the Nash equilibrium in most cases, rather converging on a fixed point which is optimal for two players, but not for the third. Further, we explore how the order of the updates influences convergence. In addition to alternating and simultaneous updates, we explore a new update order--maximizer-first--which is only possible in a three-player game. We find that three-player games can converge on a Nash equilibrium using maximizer-first updates. Finally, we experiment with differing momentum values for each player in a trilinear smooth game under all three update orders and show that maximizer-first updates achieve more optimal results in a larger set of player-specific momentum value triads than other update orders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源