论文标题

在表面上复杂矢量场的真实中心奇点上

On real center singularities of complex vector fields on surfaces

论文作者

León, V., Scárdua, B.

论文摘要

经典的Lyapunov-Poincaré中心定理的各种版本之一指出,非排定实际分析中心类型的平面矢量场奇异性是分析性的第一积分。为了证明这一结果,R。Moussu建立了这种结果与全态叶子奇异性(\ cite {Moussu})之间的重要联系。在本文中,我们考虑了两个主要框架的概括:(i)平面真实的分析矢量场,其奇异性附近具有“许多”周期性轨道,并且(ii)霍明型叶子的细菌在二维二维中具有合适的奇异性。在本文中,我们证明了Poincaré-Lyapunov Center定理的版本,包括Holomorthic Vector Fields。我们还提供了一些应用程序,暗示在此框架中还有更多探索。

One of the various versions of the classical Lyapunov-Poincaré center theorem states that a nondegenerate real analytic center type planar vector field singularity admits an analytic first integral. In a more proof of this result, R. Moussu establishes important connection between this result and the theory of singularities of holomorphic foliations (\cite{moussu}). In this paper we consider generalizations for two main frameworks: (i) planar real analytic vector fields with "many" periodic orbits near the singularity and (ii) germs of holomorphic foliations having a suitable singularity in dimension two. In this paper we prove versions of Poincaré-Lyapunov center theorem, including for the case of holomorphic vector fields. We also give some applications, hinting that there is much more to be explored in this framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源