论文标题
Privee:一种视觉分析工作流程,用于主动隐私风险检查开放数据
PRIVEE: A Visual Analytic Workflow for Proactive Privacy Risk Inspection of Open Data
论文作者
论文摘要
即使匿名化,包含个人信息的开放数据集也容易受到对抗攻击的影响。通过在具有共享属性的多个数据集上执行低成本连接,开放数据门户的恶意用户可能会访问违反个人隐私的信息。但是,开放数据集主要使用释放模型发布,在该模型中,数据所有者和保管人几乎没有意识到这些隐私风险。我们通过开发一种视觉分析解决方案来解决这一关键差距,该解决方案使数据捍卫者能够认识到本地可加入的数据社区中的披露风险。该解决方案是通过与数据隐私研究人员进行的设计研究得出的,我们最初在其中扮演红色团队的角色,并根据隐私攻击场景进行道德数据黑客练习。我们使用此问题和领域表征来开发一组视觉分析干预措施作为一种防御机制,并在Privee中实现它们,Privee是一种视觉风险检查工作流程,可作为数据捍卫者的主动监视器。 Privee结合了风险评分和相关的交互式可视化,以使数据捍卫者探索脆弱的加入并在多个数据粒度上解释风险。我们展示了Privee如何通过与数据隐私专家的两个案例研究来帮助模仿攻击策略并诊断披露风险。
Open data sets that contain personal information are susceptible to adversarial attacks even when anonymized. By performing low-cost joins on multiple datasets with shared attributes, malicious users of open data portals might get access to information that violates individuals' privacy. However, open data sets are primarily published using a release-and-forget model, whereby data owners and custodians have little to no cognizance of these privacy risks. We address this critical gap by developing a visual analytic solution that enables data defenders to gain awareness about the disclosure risks in local, joinable data neighborhoods. The solution is derived through a design study with data privacy researchers, where we initially play the role of a red team and engage in an ethical data hacking exercise based on privacy attack scenarios. We use this problem and domain characterization to develop a set of visual analytic interventions as a defense mechanism and realize them in PRIVEE, a visual risk inspection workflow that acts as a proactive monitor for data defenders. PRIVEE uses a combination of risk scores and associated interactive visualizations to let data defenders explore vulnerable joins and interpret risks at multiple levels of data granularity. We demonstrate how PRIVEE can help emulate the attack strategies and diagnose disclosure risks through two case studies with data privacy experts.