论文标题

带有指导性的神经体系结构搜索,具有有效的性能估计

Guided Evolutionary Neural Architecture Search With Efficient Performance Estimation

论文作者

Lopes, Vasco, Santos, Miguel, Degardin, Bruno, Alexandre, Luís A.

论文摘要

神经体系结构搜索(NAS)方法已成功地应用于具有出色结果的图像任务。但是,NAS方法通常很复杂,并且一旦产生的体系结构似乎会产生良好的结果,往往会收敛到本地最小值。本文提出了GEA,这是NAS引导的一种新颖方法。 GEA通过使用零值估算器在初始化阶段生成和评估每一代的几个架构来探索搜索空间,从而指导进化,在该阶段,只有训练最高得分的体系结构并保留了下一代。随后,GEA通过从每一代人的现有体系结构中产生几个偏高而不断提取有关搜索空间的知识,而不会增加复杂性。更重要的是,GEA迫使后代产生对最性能的建筑施加剥削,同时通过父母突变来推动探索,并偏爱年轻的体系结构损害了较老的建筑。实验结果证明了该方法的有效性,广泛的消融研究评估了不同参数的重要性。结果表明,GEA在NAS-Bench-101,NAS Bench-201和TransNAS-BENCH-101基准的所有数据集上实现了最先进的结果。

Neural Architecture Search (NAS) methods have been successfully applied to image tasks with excellent results. However, NAS methods are often complex and tend to converge to local minima as soon as generated architectures seem to yield good results. This paper proposes GEA, a novel approach for guided NAS. GEA guides the evolution by exploring the search space by generating and evaluating several architectures in each generation at initialisation stage using a zero-proxy estimator, where only the highest-scoring architecture is trained and kept for the next generation. Subsequently, GEA continuously extracts knowledge about the search space without increased complexity by generating several off-springs from an existing architecture at each generation. More, GEA forces exploitation of the most performant architectures by descendant generation while simultaneously driving exploration through parent mutation and favouring younger architectures to the detriment of older ones. Experimental results demonstrate the effectiveness of the proposed method, and extensive ablation studies evaluate the importance of different parameters. Results show that GEA achieves state-of-the-art results on all data sets of NAS-Bench-101, NAS-Bench-201 and TransNAS-Bench-101 benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源