论文标题

多元多项式空间的投影常数

Projection constants for spaces of multivariate polynomials

论文作者

Defant, Andreas, Galicer, Daniel, Mansilla, Martín, Mastyło, Mieczysław, Muro, Santiago

论文摘要

我们解决的一般问题是在研究多个多项式Banach空间的投影常数研究中开发新方法。 Banach $ y $的子空间$ x $的相对投影常数$ \boldsymbolλ$是$ y $ y $ y $ to $ x $的所有可能预测中的最小规范,并且投影常数$ \boldsymbolλ(x)$是所有相对投影常数$ x $的超级X $,供所有可能的超级空间$ y $。这是现代Banach空间理论的最重要概念之一,自抽象操作者理论诞生以来,已经对其进行了深入的研究。我们专注于由三角多项式组成的多元多项式的投影常数$ f(g)= \ sum_ {γ\ in E} \ hat} \ hat {f}(γ)(γ)γ(g)$ j $ g $ j $ g $ thef four $ g \ f hat $ g \ hat the fours $ g} f ins $ g $} f posities $ g $} f ins $ g $ {f(g)。 $ e $字符;或分析多项式$ p(z)= \ sum_ {in j}c_α(p)\,z^α$,在banach space上定义$ x_n =(\ mathbb {c}^n,\ | \ | \ | \ cdot \ |)$ j $c_α(p)$c_α(p) \ Mathbb {n} _0^n $的多指数。根据(BANACH空间或索引集的组的基础结构),目标是证明精确的公式或渐近最佳估计。我们的一般设置足够灵活,可以处理多种多项式的各种Banach空间,包括在polydiscs上的分析多项式,复杂平面上的dirichlet多项式以及布尔维亚数据集的多项式元素$ \ \ \ { - 1,+1,+1,+1 \}^n $。此外,我们获得了痕迹类操作员空间的投影常数的明确公式。此处开发的方法使我们能够证明重要不变的新估计值,例如无条件基础常数和戈登 - 刘易斯常数用于多元多项式的Banach空间。

The general problem we address is to develop new methods in the study of projection constants of Banach spaces of multivariate polynomials. The relative projection constant $\boldsymbolλ(X,Y)$ of a subspace $X$ of a Banach $Y$ is the smallest norm among all possible projections on $Y$ onto $X$, and the projection constant $\boldsymbolλ(X)$ is the supremum of all relative projection constants of $X$ taken with respect to all possible super spaces $Y$. This is one of the most significant notions of modern Banach space theory and has been intensively studied since the birth of abstract operator theory. We focus on projection constants of Banach spaces of multivariate polynomials formed either by trigonometric polynomials $f(g)=\sum_{γ\in E} \hat{f}(γ) γ(g)$ defined on a compact topological group $G$, which have Fourier coefficients $\hat{f}(γ)$ supported in a finite set $E$ of characters; or analytic polynomials $P(z)=\sum_{α\in J}c_α(P)\,z^α$, which are defined on a Banach space $X_n = (\mathbb{C}^n, \|\cdot\|)$ and have monomial coefficients $c_α(P)$ supported in a finite set $J \subset \mathbb{N}_0^n$ of multi indices. Depending on the underlying structure (of the group, Banach space or index set), the goal is to prove precise formulas or asymptotically optimal estimates. Our general setting is flexible enough to handle a wide variety of Banach spaces of polynomials, including analytic polynomials on polydiscs, Dirichlet polynomials on the complex plane, and polynomials on Boolean cubes $\{-1,+1\}^n$. Moreover, we get an explicit formula for the projection constant of the space of trace class operators. The methods developed here enable us to prove new estimates for important invariants such as the unconditional basis constant and the Gordon-Lewis constant for Banach spaces of multivariate polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源