论文标题
可变3D大气的辐射转移
Radiative Transfer For Variable 3D Atmospheres
论文作者
论文摘要
为了研究受电磁辐射的气体的温度,可以使用辐射转移方程与Navier-Stokes方程相连。这个问题有7个维度;然而,随着最小的简化,它等效于在3个维度中的少数多数差异方程式。我们使用H-Matrix压缩方案提出了该方法和数值实现。结果是一个非常快的:50k物理点,辐射的所有方向和680个频率的频率需要少于5分钟的Apple M1笔记本电脑。该方法能够处理空间位置和频率的可变吸收和散射功能。 该实现是使用与PDE Solver FreeFem ++相连的矩阵压缩库HTool完成的。在法国查莫尼克山谷(Chamonix Valley)中的温度施用在一天中的不同小时内,有和没有雪 /云,并从双子座测量值中获取可变的吸收。结果足够精确,可以断言由于温室气体的振动频率子范围的吸收增加而引起的温度差异。
To study the temperature in a gas subjected to electromagnetic radiations, one may use the Radiative Transfer equations coupled with the Navier-Stokes equations. The problem has 7 dimensions; however with minimal simplifications it is equivalent to a small number of integro-differential equations in 3 dimensions. We present the method and a numerical implementation using an H-matrix compression scheme. The result is a very fast: 50K physical points, all directions of radiation and 680 frequencies require less than 5 minutes on an Apple M1 Laptop. The method is capable of handling variable absorptioN and scattering functionS of spatial positions and frequencies. The implementation is done using htool, a matrix compression library interfaced with the PDE solver freefem++. Applications to the temperature in the French Chamonix valley is presented at different hours of the day with and without snow / clouds and with a variable absorption taken from the Gemini measurements. The result is precise enough to assert temperature differences due to increased absorption in the vibrational frequency subrange of greenhouse gasses.