论文标题

基于PDE的统计时空模型中的Gibbs现象抑制

Gibbs Phenomenon Suppression in PDE-Based Statistical Spatio-Temporal Models

论文作者

Wei, Guanzhou, Liu, Xiao, Barton, Russell

论文摘要

最近,已经提出了一类物理信息时空模型,用于建模由对流扩散方程控制的时空过程。核心思想是通过截断的傅立叶序列近似过程,让管理物理确定光谱系数的动力学。但是,由于实际应用中的许多时空过程与边界不连续性是非周期性的,因此众所周知的Gibbs现象和涟漪伪影几乎总是存在于由于傅立叶序列的截断而产生的输出中。因此,本文的关键贡献是提出一种物理上的时空建模方法,该方法在建模时空对流扩散过程时会显着抑制吉布斯现象。所提出的方法从沿水平和垂直方向的过程分别为该过程的数据翻转过程开始(好像我们正在展开沿两个方向折叠两次的纸张)。由于翻转的过程在空间周期性上变为周期性,并且具有完整的波形而没有任何边界不连续性,因此即使傅立叶级数被截断,吉布斯现象也会消失。然后,对于控制该过程的部分差分方程(PDE),本文通过获得光谱系数的新时间动态来扩展了现有的基于PDE的时空模型,同时维持了翻转过程的物理解释,从而扩展了基于PDE的时空模型。已经进行了基于实际数据集的数值研究,以证明所提出的方法的优势。发现所提出的方法有效地抑制了吉布斯现象,并显着降低了在建模时空平流扩散过程中的连锁反应。计算机代码可在GitHub上找到。

A class of physics-informed spatio-temporal models has recently been proposed for modeling spatio-temporal processes governed by advection-diffusion equations. The central idea is to approximate the process by a truncated Fourier series and let the governing physics determine the dynamics of the spectral coefficients. However, because many spatio-temporal processes in real applications are non-periodic with boundary discontinuities, the well-known Gibbs phenomenon and ripple artifact almost always exist in the outputs generated by such models due to truncation of the Fourier series. Hence, the key contribution of this paper is to propose a physics-informed spatio-temporal modeling approach that significantly suppresses the Gibbs phenomenon when modeling spatio-temporal advection-diffusion processes. The proposed approach starts with a data flipping procedure for the process respectively along the horizontal and vertical directions (as if we were unfolding a piece of paper that has been folded twice along the two directions). Because the flipped process becomes spatially periodic and has a complete waveform without any boundary discontinuities, the Gibbs phenomenon disappears even if the Fourier series is truncated. Then, for the flipped process and given the Partial Differential Equation (PDE) that governs the process, this paper extends an existing PDE-based spatio-temporal model by obtaining the new temporal dynamics of the spectral coefficients, while maintaining the physical interpretation of the flipped process. Numerical investigations based on a real dataset have been performed to demonstrate the advantages of the proposed approach. It is found that the proposed approach effectively suppresses the Gibbs Phenomenon and significantly reduces the ripple artifact in modeling spatio-temporal advection-diffusion processes. Computer code is available on GitHub.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源