论文标题
一种新的深度学习解决方案,用于增强支持向量机,用于预测2型糖尿病的发作
A novel solution of deep learning for enhanced support vector machine for predicting the onset of type 2 diabetes
论文作者
论文摘要
2型糖尿病是人类已知的最严重和致命疾病之一,每年有成千上万的人受到2型糖尿病的发作。但是,在当今情况下,2型糖尿病的诊断和预防相对昂贵。因此,机器学习和深度学习技术的使用正在获得预测2型糖尿病发作的动力。这项研究旨在提高曲线下的准确性和面积(AUC)度量,同时改善预测2型糖尿病发作的处理时间。所提出的系统由一种深度学习技术组成,该技术使用支持向量机(SVM)算法以及径向基本功能(RBF)以及长的短期记忆层(LSTM)来预测2型糖尿病的发作。提出的解决方案提供的平均准确度为86.31%,平均AUC值为0.8270或82.70%,加工中的平均值为3.8毫秒。径向基本功能(RBF)内核和LSTM层增强了当前行业标准的预测准确性和AUC度量,这使得它在不损害处理时间的情况下更可行。
Type 2 Diabetes is one of the most major and fatal diseases known to human beings, where thousands of people are subjected to the onset of Type 2 Diabetes every year. However, the diagnosis and prevention of Type 2 Diabetes are relatively costly in today's scenario; hence, the use of machine learning and deep learning techniques is gaining momentum for predicting the onset of Type 2 Diabetes. This research aims to increase the accuracy and Area Under the Curve (AUC) metric while improving the processing time for predicting the onset of Type 2 Diabetes. The proposed system consists of a deep learning technique that uses the Support Vector Machine (SVM) algorithm along with the Radial Base Function (RBF) along with the Long Short-term Memory Layer (LSTM) for prediction of onset of Type 2 Diabetes. The proposed solution provides an average accuracy of 86.31 % and an average AUC value of 0.8270 or 82.70 %, with an improvement of 3.8 milliseconds in the processing. Radial Base Function (RBF) kernel and the LSTM layer enhance the prediction accuracy and AUC metric from the current industry standard, making it more feasible for practical use without compromising the processing time.