论文标题
在单个Sio2/Ti/Pt堆栈上生长的不同纹理PZT薄膜用于压电MEMS应用
Different textured PZT thin films grown on a single SiO2/Ti/Pt stack for piezo MEMS applications
论文作者
论文摘要
在过去的二十年中,Piezo MEMS技术因其对生物医学应用的超声传感和驱动设备的低功率消耗而出现。仍然研究人员在压电器设备的小型化方面面临着挑战。但是,最新的没有关于在同一压电材料中实现更好的灵敏度和致动强度特性的报道。由于压电材料本质上是各向异性的,因此在单个硅底物上种植不同纹理的PZT薄膜至关重要。在本研究中,我们证明了一种简单的方法,即在没有通过湿化学方法上引入任何缓冲层的硅质薄膜,而没有引入任何缓冲层。对于这两种类型的修饰底部电极Ti/pt堆栈,即使用光刻技术在同一硅底物上的单层和双层PT。在这些PT层上生长的PZT薄膜的质地显示(111)和(100)首选方向。在两个PT表面上进行了XPS表面分析,以研究不同PT层上不同纹理PZT的异常行为。据报道,测得的铁电和压电性能显示出(100)个定向膜的较低的remanent极化和高的压电值。面向(100)的薄膜显示了一个压电(D33,F)的值,是单个硅基板上面向的PZT薄膜的两倍。
For the past two decades piezo MEMS technology are emerging for its low power consumption of ultrasonic sensing and actuation devices for biomedical applications. Still researchers are facing challenges in miniaturization of piezo-MEMS devices. But up-to-date there is no reports on achieving better sensitivity and actuation strength properties in the same piezoelectric material. As piezoelectric materials are anisotropic in nature, for that it is essential to grow different textured PZT thin film on a single silicon substrate. In the present investigation we have demonstrated the simple method of growing different textured PZT thin film with same process condition without introducing any buffer layer on a platinised silicon wafer by wet chemical method. For this two types of modified bottom electrode Ti/Pt stacks have been proposed i.e., mono- and bilayer Pt on a same silicon substrate using lithography techniques. The texture of the PZT thin film grown on these Pt layers shows (111) and (100) preferred orientations. The XPS surface analysis was carried out on both Pt surfaces to investigate the anomalous behaviour of different textured PZT on different Pt layers. The measured ferroelectric and piezoelectric properties has shown low remanent polarization and high piezocoefficient values for (100) oriented film as reported. The (100) oriented film shows piezocoefficient (d33,f) value twice than that of (111) oriented PZT thin films on a single silicon substrate.