论文标题
$ p $ - 局部分解的射影型歧管
$p$-local decompositions of projective Stiefel manifolds
论文作者
论文摘要
本文的主要目的是分析复杂的投影齿状歧管的$ p $ - 本地同型类型,以及其他类似的stiefel歧管。我们从Yamaguchi的结果中获取了关于复杂Stiefel歧管的$ P $的结果,这些歧管却放下了一些假设,在这些假设下,Stiefel歧管为$ p $ $ p $ - 位于奇数尺寸球的产物。我们表明,在许多情况下,投射的stiefel歧管是$ p $ - 局部是复杂的投影空间和一些奇数尺寸球的产物。作为一个应用程序,我们证明在这些情况下,Yamaguchi的$ P $ regulachity结果也是$ s^1 $ equivariant。
The main objective of this paper is to analyze the $p$-local homotopy type of the complex projective Stiefel manifolds, and other analogous quotients of Stiefel manifolds. We take the cue from a result of Yamaguchi about the $p$-regularity of the complex Stiefel manifolds which lays down some hypotheses under which the Stiefel manifold is $p$-locally a product of odd dimensional spheres. We show that in many cases, the projective Stiefel manifolds are $p$-locally a product of a complex projective space and some odd dimensional spheres. As an application, we prove that in these cases, the $p$-regularity result of Yamaguchi is also $S^1$-equivariant.