论文标题

在Lipschitz的连续性和平滑度上,直到双曲线泊松方程解决方案的边界

On Lipschitz continuity and smoothness up to the boundary of solutions of hyperbolic Poisson's equation

论文作者

Mateljević, Miodrag, Mutavdžić, Nikola

论文摘要

我们解决了dirichlet问题$ \ left.u \ right | _ {\ mathbb {b}^n} =φ,$ for超纤维泊松方程$Δ_Hu =μ$ $ $ $ $ $ $ $ $ $ $φ\ in l_1(\ partial \ mathbb {b}^n)$和$ $ $ a的条件,使得A级的条件。 接下来,我们为Lipschitz连续的某些双曲线泊松方程的解决方案提供了简短的证明,该方程以前在\ cite {Chenras}中建立。 此外,我们研究了关于双曲线拉普拉斯的一些替代假设,这些假设与Riesz的潜力有关。此外,事实证明,当地的Hölder连续性可以解决某些双曲线泊松方程。 我们表明,如果$ u $在上半空间中是双曲线谐波,则$ \ frac {\ partial u} {\ partial y}(x_0,y)\ to 0,y \ to 0,y \ to y \ to 0^+$,当功能的边界函数$ f $ u $在边界点上是$ u $的$ f $时,在边界点$ u $可区分$ x_0 $。作为推论,我们显示$ c^1(\ overline {\ mathbb {h}^n})$双曲谐波函数的平滑度,该函数从$ c_c^1(\ mathbb {r}^{n-1})复制。

We solve the Dirichlet problem $\left.u\right|_{\mathbb{B}^n}=φ,$ for hyperbolic Poisson's equation $Δ_h u=μ$ where $φ\in L_1(\partial \mathbb{B}^n)$ and $μ$ is a measure that satisfies a growth condition. Next we present a short proof for Lipschitz continuity of solutions of certain hyperbolic Poisson's equations, previously established at \cite{ChenRas}. In addition, we investigate some alternative assumptions on hyperbolic Laplacian, which are connected with Riesz's potential. Also, local Hölder continuity is proved for solution of certain hyperbolic Poisson's equations. We show that, if $u$ is hyperbolic harmonic in the upper half-space, then $\frac{\partial u}{\partial y}(x_0,y)\to 0, y\to 0^+$, when boundary function $f$ of the functions $u$ is differentiable at the boundary point $x_0$. As a corollary, we show $C^1(\overline{\mathbb{H}^n})$ smoothness of a hyperbolic harmonic function, which is reproduced from the $C_c^1(\mathbb{R}^{n-1})$ boundary values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源