论文标题

可接受的基本运算符,与$ $ $ $合成相关的两个域相关

Admissible fundamental operators associated with two domains related to $μ$-synthesis

论文作者

Bisai, Bappa

论文摘要

在本文中,我们讨论了完全非单身(C.N.U)$γ_{n} $ - 收缩和C.N.U $ \ Mathbb e $ $ - $ $ - 合同的必要条件。考虑两个元组,$(a_1,\ dots,a_ {n-1})$和$(b_1,\ dots,b_ {n-1})$,在两个Hilbert Spaces上定义的操作员。主要目标之一是确定一个必要和足够的条件,以保证存在c.n.u $γ_n$ -contraction $(s_1,\ dots,s_ {n-1},p)$ $(a_1,\ dots,a_1,\ dots,a_ {n-1})$ s_ {n-1},p)$和$(b_1,\ dots,b_ {n-1})$变为$(s_1^*,\ dots,s_1^*,s_ {n-1}^*,p^*,p^*)$。同样在给定两对操作员$(f_1,f_2)$和$(g_1,g_2)$上定义在两个希尔伯特空间上的$,我们检查何时有一个c.n.u $ \ $ \ mathbb e $ -contraction $(a,b,p)$ $(g_1,g_2)$变为$ \ Mathcal {f} _O $ - $(a^*,b^*,p^*)$的$。

In this article, we discuss necessary condition of conditional dilation for both completely non-unitary (c.n.u) $Γ_{n}$-contractions and c.n.u $\mathbb E$-contractions. Consider two tuples, $(A_1, \dots, A_{n-1})$ and $(B_1, \dots, B_{n-1})$, of operators defined on two Hilbert spaces. One of the principal goals is to identify a necessary and a sufficient condition guaranteeing the existence of a c.n.u $Γ_n$-contraction $(S_1, \dots, S_{n-1},P)$ such that $(A_1, \dots, A_{n-1})$ becomes the $\mathcal{F}_O$-tuple of $(S_1, \dots, S_{n-1},P)$ and $(B_1, \dots,B_{n-1})$ becomes the $\mathcal{F}_O$-tuple of $(S_1^*,\dots, S_{n-1}^*,P^*)$. Also for given two pairs of operators $(F_1,F_2)$ and $(G_1,G_2)$ defined on two Hilbert spaces, we examine when there is a c.n.u $\mathbb E$-contraction $(A,B,P)$ such that $(F_1,F_2)$ becomes the $\mathcal{F}_O$-pair of $(A,B,P)$ and $(G_1,G_2)$ becomes the $\mathcal{F}_O$-pair of $(A^*,B^*,P^*)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源