论文标题

有条件的抗体设计作为3D均等图翻译

Conditional Antibody Design as 3D Equivariant Graph Translation

论文作者

Kong, Xiangzhe, Huang, Wenbing, Liu, Yang

论文摘要

抗体设计对于治疗用法和生物学研究很有价值。现有的基于深度学习的方法遇到了几个关键问题:1)互补性区域(CDRS)生成的不完整上下文; 2)无法捕获输入结构的整个3D几何形状; 3)以自回归方式对CDR序列的效率低下。在本文中,我们将多通道等效的注意网络(平均值)提出,将其针对CDRS的共设计1D序列和3D结构。要具体,平均值将抗体设计作为条件图翻译问题,通过导入包括靶抗原和抗体的轻链在内的额外组件。然后,平均诉诸于E(3) - 等级信息以及提出的注意机制,以更好地捕获不同组件之间的几何相关性。最后,它通过多轮的渐进式全局方案来输出1D序列和3D结构,该方案在以前的自回归方法上具有更高的效率和精度。我们的方法显着超过了序列和结构建模,抗原结合CDR设计以及结合亲和力优化的最新模型。具体而言,抗原结合CDR设计的相对改善约为23%,亲和力优化为34%。

Antibody design is valuable for therapeutic usage and biological research. Existing deep-learning-based methods encounter several key issues: 1) incomplete context for Complementarity-Determining Regions (CDRs) generation; 2) incapability of capturing the entire 3D geometry of the input structure; 3) inefficient prediction of the CDR sequences in an autoregressive manner. In this paper, we propose Multi-channel Equivariant Attention Network (MEAN) to co-design 1D sequences and 3D structures of CDRs. To be specific, MEAN formulates antibody design as a conditional graph translation problem by importing extra components including the target antigen and the light chain of the antibody. Then, MEAN resorts to E(3)-equivariant message passing along with a proposed attention mechanism to better capture the geometrical correlation between different components. Finally, it outputs both the 1D sequences and 3D structure via a multi-round progressive full-shot scheme, which enjoys more efficiency and precision against previous autoregressive approaches. Our method significantly surpasses state-of-the-art models in sequence and structure modeling, antigen-binding CDR design, and binding affinity optimization. Specifically, the relative improvement to baselines is about 23% in antigen-binding CDR design and 34% for affinity optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源