论文标题

使用异质机器人团队(ASLAP-HR)自适应对潜在现象的采样

Adaptive Sampling of Latent Phenomena using Heterogeneous Robot Teams (ASLaP-HR)

论文作者

Malencia, Matthew, Manjanna, Sandeep, Hsieh, M. Ani, Pappas, George, Kumar, Vijay

论文摘要

在本文中,我们为具有异质传感器的机器人团队提出了在线自适应计划策略,以使用学习的模型进行决策模型从潜在的空间领域进行采样。当前的机器人抽样方法试图收集有关可观察到的空间场的信息。但是,许多应用程序,例如环境监测和精确农业,都涉及不直接观察或衡量昂贵的现象,称为潜在现象。在我们的方法中,我们试图通过使用具有异质传感器的机器人团队有效地采样可观察到的空间场来实时推理潜在现象,其中每个机器人都有一个独特的传感器来测量不同可观察的场。使用从可观察到的空间场映射到潜在现象的模型来估计信息增益。该模型捕获了关系中的不确定性,以允许信息理论措施。此外,我们明确考虑可观察到的空间场之间的相关性,从而捕获了观察结果并非独立的传感器类型之间的关系。我们表明,可以学习这些相关性,并研究学习相关模型对采样方法性能的影响。通过我们的定性和定量结果,我们说明了经验学习的相关性提高了团队的整体抽样效率。我们使用在魁北克的Lac Hertel上收集的传感器测量数据集模拟了我们的方法,我们将公开使用。

In this paper, we present an online adaptive planning strategy for a team of robots with heterogeneous sensors to sample from a latent spatial field using a learned model for decision making. Current robotic sampling methods seek to gather information about an observable spatial field. However, many applications, such as environmental monitoring and precision agriculture, involve phenomena that are not directly observable or are costly to measure, called latent phenomena. In our approach, we seek to reason about the latent phenomenon in real-time by effectively sampling the observable spatial fields using a team of robots with heterogeneous sensors, where each robot has a distinct sensor to measure a different observable field. The information gain is estimated using a learned model that maps from the observable spatial fields to the latent phenomenon. This model captures aleatoric uncertainty in the relationship to allow for information theoretic measures. Additionally, we explicitly consider the correlations among the observable spatial fields, capturing the relationship between sensor types whose observations are not independent. We show it is possible to learn these correlations, and investigate the impact of the learned correlation models on the performance of our sampling approach. Through our qualitative and quantitative results, we illustrate that empirically learned correlations improve the overall sampling efficiency of the team. We simulate our approach using a data set of sensor measurements collected on Lac Hertel, in Quebec, which we make publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源