论文标题
消防模拟中银河系质量星系周围卫星星系的轨道动力和历史
Orbital dynamics and histories of satellite galaxies around Milky Way-mass galaxies in the FIRE simulations
论文作者
论文摘要
卫星星系的轨道编码有关其历史的丰富信息。我们使用Fire-2宇宙学模拟研究了银河系(MW) - 质量宿主星系周围卫星星系的轨道动力学和历史,正如先前的作品所表明的那样,这些模拟产生了卫星质量功能和空间分布,这些分布广泛地与观察结果一致。我们首先检查Z = 0时轨道动力学的趋势,包括总速度,特定的角动量和特定的总能量:中输入到MW-MAS HALO中的时间主要确定这些轨道特性。然后,我们检查轨道历史,重点是首次进入宿主光环和候选物距离,时间和计数的回顾时间。 MSTAR <10^7 MSUN的星系中约有37%被“预处理”为较低质量组的卫星,通常约为2.7 Gyr,然后掉入MW-MAS HALO之前。 Z = 0的所有卫星中的一半经历了有关其MW-MAS宿主的多名候选者。值得注意的是,对于这些卫星中的大多数(67%)来说,它们的最新院士不是其最小偏心者:最小值通常较小约40%,较早发生〜6 Gyr。这些具有越来越多的周围物质的卫星似乎具有多个起源:对于大约一半,它们的特定角动量随着时间的推移逐渐增加,而对于另一半,大多数人在第一个偶然者附近迅速增加,这表明与时间有关的MW Mass Halo潜力和动态扰动的组合结合了外部晕圈中这些卫星的污水剂会导致这些污水剂的生长。我们的结果突出了理想化的静态轨道建模的局限性,尤其是对于院士历史。
The orbits of satellite galaxies encode rich information about their histories. We investigate the orbital dynamics and histories of satellite galaxies around Milky Way (MW)-mass host galaxies using the FIRE-2 cosmological simulations, which, as previous works have shown, produce satellite mass functions and spatial distributions that broadly agree with observations. We first examine trends in orbital dynamics at z = 0, including total velocity, specific angular momentum, and specific total energy: the time of infall into the MW-mass halo primarily determines these orbital properties. We then examine orbital histories, focusing on the lookback time of first infall into a host halo and pericenter distances, times, and counts. Roughly 37 per cent of galaxies with Mstar < 10^7 Msun were `pre-processed' as a satellite in a lower-mass group, typically ~2.7 Gyr before falling into the MW-mass halo. Half of all satellites at z = 0 experienced multiple pericenters about their MW-mass host. Remarkably, for most (67 per cent) of these satellites, their most recent pericenter was not their minimum pericenter: the minimum typically was ~40 per cent smaller and occurred ~6 Gyr earlier. These satellites with growing pericenters appear to have multiple origins: for about half, their specific angular momentum gradually increased over time, while for the other half, most rapidly increased near their first apocenter, suggesting that a combination of a time-dependent MW-mass halo potential and dynamical perturbations in the outer halo caused these satellites' pericenters to grow. Our results highlight the limitations of idealized, static orbit modeling, especially for pericenter histories.