论文标题
平面量子重力的矩阵模型
A Matrix Model for Flat Space Quantum Gravity
论文作者
论文摘要
我们迈出了对二维Dilaton-Gravity理论的非扰动描述,该理论具有消失的宇宙常数并包含黑洞。这是根据双级缩放的Hermitian随机矩阵模型来完成的,该模型非扰动地计算渐近邦迪hamiltonian的分区函数。为了达到这一联系,我们首先构建了理论的规范不变的渐近相空间,并确定相关的渐近边界条件,计算经典的S-matrix,最后阐明了先前作品中定义的欧几里得路径积分的解释。然后,我们构建了一个矩阵模型,该模型与后者的拓扑扩展与所有顺序相匹配。这使我们能够计算细粒度的邦德频谱和其他较晚的可观察到,并构建渐近的希尔伯特空间。我们进一步研究有限截止理论的半古典动力学的方面,该理论耦合到探测问题,并在超级相关器中找到最大混乱的行为的证据。我们以一种构建非扰动的S-矩阵的策略来结束,该模型耦合到探测物质并评论天体全息摄影中黑洞的处理。
We take a step towards the non-perturbative description of a two-dimensional dilaton-gravity theory which has a vanishing cosmological constant and contains black holes. This is done in terms of a double-scaled Hermitian random matrix model which non-perturbatively computes the partition function for the asymptotic Bondi Hamiltonian. To arrive at this connection we first construct the gauge-invariant asymptotic phase space of the theory and determine the relevant asymptotic boundary conditions, compute the classical S-matrix and, finally, shed light on the interpretation of the Euclidean path integral defined in previous works. We then construct a matrix model that matches the topological expansion of the latter, to all orders. This allows us to compute the fine-grained Bondi spectrum and other late time observables and to construct asymptotic Hilbert spaces. We further study aspects of the semi-classical dynamics of the finite cut-off theory coupled to probe matter and find evidence of maximally chaotic behavior in out-of-time-order correlators. We conclude with a strategy for constructing the non-perturbative S-matrix for our model coupled to probe matter and comment on the treatment of black holes in celestial holography.