论文标题

新的动力学自由度免于可逆转变

New Dynamical Degrees of Freedom from Invertible Transformations

论文作者

Jiroušek, Pavel, Shimada, Keigo, Vikman, Alexander, Yamaguchi, Masahide

论文摘要

我们表明,动态变量的可逆转换可以改变动态自由度的数量。此外,即使在动态自由度的数量保持不变的情况下,最终的动力学也可以与转换之前的系统不同。在给点粒子案例中给出具体示例之后,我们讨论了由于重力理论中度量的可逆变形而引起的动态变化

We show that invertible transformations of dynamical variables can change the number of dynamical degrees of freedom. Moreover, even in cases when the number of dynamical degrees of freedom remains unchanged, the resulting dynamics can be essentially different from the one of the system prior to transformation. After giving concrete examples in point particle cases, we discuss changes in dynamics due to invertible disformal transformations of the metric in gravitational theories

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源