论文标题

$κ$-PoincaréGeodesics的所有非交换空间

All noncommutative spaces of $κ$-Poincaré geodesics

论文作者

Ballesteros, Angel, Gutierrez-Sagredo, Ivan, Herranz, Francisco J.

论文摘要

地球学的非共同空间提供了一种替代量子组对称性的非交流性相对论运动学的替代方法。在本文中,我们明确介绍了时间,空间和光明的测量学的七个非交通空间,这些空间可以从(3+1)维度的$κ$-Poincaré量子对称性的$κ$-POINCARé量子对称性构建。值得注意的是,只有对于轻度(或无效的平面)$κ$-POINCARé变形,可以构建三种类型的地球化学的非交换空间,而对于时间且类似太空的变形,可以定义类似量子的时间和类似于量子的时间,但不能定义类似于量子的大地测量学。这种障碍物来自相对于与给定的大地测量空间相关的各向同性亚词素相应的相应变形的共同体条件所施加的约束,因为所有这些量子空间都是构造的,作为对相应的经典同层的均质poisson均质空间的量化。五维同质二次代数给出了测量锥上的已知量子空间,并且六个时间样和类似空间的大地测量学的六个综合空间被显式获得为六维非线性代数。这里首次提出了这六个空间中的五个,并且发现了所有这些空间的生成器,因此表明量子变形参数$κ^{ - 1} $在量子测量中与Planck Constants $ \ hbar $在量子相位空间的量子$ \ hbar中扮演着完全相同的代数角色。

Noncommutative spaces of geodesics provide an alternative way of introducing noncommutative relativistic kinematics endowed with quantum group symmetry. In this paper we present explicitly the seven noncommutative spaces of time-, space- and light-like geodesics that can be constructed from the time-, space- and light- versions of the $κ$-Poincaré quantum symmetry in (3+1) dimensions. Remarkably enough, only for the light-like (or null-plane) $κ$-Poincaré deformation the three types of noncommutative spaces of geodesics can be constructed, while for the time-like and space-like deformations both the quantum time-like and space-like geodesics can be defined, but not the light-like one. This obstruction comes from the constraint imposed by the coisotropy condition for the corresponding deformation with respect to the isotropy subalgebra associated to the given space of geodesics, since all these quantum spaces are constructed as quantizations of the corresponding classical coisotropic Poisson homogeneous spaces. The known quantum space of geodesics on the light cone is given by a five-dimensional homogeneous quadratic algebra, and the six nocommutative spaces of time-like and space-like geodesics are explicitly obtained as six-dimensional nonlinear algebras. Five out of these six spaces are here presented for the first time, and Darboux generators for all of them are found, thus showing that the quantum deformation parameter $κ^{-1}$ plays exactly the same algebraic role on quantum geodesics as the Planck constant $\hbar$ plays in the usual phase space description of quantum mechanics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源