论文标题
基于差异的自我监督训练预处理场景更改检测
Differencing based Self-supervised pretraining for Scene Change Detection
论文作者
论文摘要
场景变化检测(SCD)是一项关键的感知任务,通过比较在不同时间捕获的场景来确定变化。 SCD由于嘈杂的照明,季节性变化和两种观点的透视差异而具有挑战性。基于深度神经网络的解决方案需要大量的注释数据,这些数据乏味而昂贵。另一方面,从大型数据集中传输学习会导致域移动。为了应对这些挑战,我们提出了一种新颖的\ textit {差异自我监督预处理(DSP)}方法,该方法使用特征差异来学习与变化区域相对应的歧视性表示,同时通过跨视图来实现时间不变性来解决嘈杂的变化。我们在SCD数据集上的实验结果证明了我们方法的有效性,特别是在摄像机观点和照明条件下的差异。与使用超过一百万个标记的图像的自我监管的Barlow双胞胎和标准成像网的预处理相比,DSP可以超过它而无需使用任何其他数据。我们的结果还表明,在有限的标记数据下,DSP对自然腐败,分配转移和学习的鲁棒性。
Scene change detection (SCD), a crucial perception task, identifies changes by comparing scenes captured at different times. SCD is challenging due to noisy changes in illumination, seasonal variations, and perspective differences across a pair of views. Deep neural network based solutions require a large quantity of annotated data which is tedious and expensive to obtain. On the other hand, transfer learning from large datasets induces domain shift. To address these challenges, we propose a novel \textit{Differencing self-supervised pretraining (DSP)} method that uses feature differencing to learn discriminatory representations corresponding to the changed regions while simultaneously tackling the noisy changes by enforcing temporal invariance across views. Our experimental results on SCD datasets demonstrate the effectiveness of our method, specifically to differences in camera viewpoints and lighting conditions. Compared against the self-supervised Barlow Twins and the standard ImageNet pretraining that uses more than a million additional labeled images, DSP can surpass it without using any additional data. Our results also demonstrate the robustness of DSP to natural corruptions, distribution shift, and learning under limited labeled data.