论文标题
图表上的联合重构分割
Joint reconstruction-segmentation on graphs
论文作者
论文摘要
实用的图像分割任务涉及必须从嘈杂,扭曲和/或不完整的观察值重建的图像。解决此类任务的最新方法是使用分段共同执行此次重建,使用每个分割来指导彼此。但是,迄今为止,这项工作采用了相对简单的分割方法,例如Chan - VESE算法。在本文中,我们提出了一种使用基于图的分割方法进行联合重建分割的方法,该方法一直在看到最近的兴趣增加。由于涉及的矩阵尺寸较大而引起并发症,我们展示了如何管理这些并发症。然后,我们分析我们方案的收敛性。最后,我们将此方案应用于``两个母牛''图像的扭曲版本中,首先是基于图的分割文献中熟悉的``两个奶牛''图像,首先是高度噪声的版本,其次是模糊的版本,在两种情况下都可以实现高度准确的细分。我们将这些结果与通过顺序重建分割方法获得的结果进行比较,发现我们的方法与重建和分割精度竞争甚至均超过了这些方法。
Practical image segmentation tasks concern images which must be reconstructed from noisy, distorted, and/or incomplete observations. A recent approach for solving such tasks is to perform this reconstruction jointly with the segmentation, using each to guide the other. However, this work has so far employed relatively simple segmentation methods, such as the Chan--Vese algorithm. In this paper, we present a method for joint reconstruction-segmentation using graph-based segmentation methods, which have been seeing increasing recent interest. Complications arise due to the large size of the matrices involved, and we show how these complications can be managed. We then analyse the convergence properties of our scheme. Finally, we apply this scheme to distorted versions of ``two cows'' images familiar from previous graph-based segmentation literature, first to a highly noised version and second to a blurred version, achieving highly accurate segmentations in both cases. We compare these results to those obtained by sequential reconstruction-segmentation approaches, finding that our method competes with, or even outperforms, those approaches in terms of reconstruction and segmentation accuracy.