论文标题
使用类似理论量子样的上下文和伯特的模型的模型
A Model of Anaphoric Ambiguities using Sheaf Theoretic Quantum-like Contextuality and BERT
论文作者
论文摘要
自然语言的歧义并不能阻止我们使用它,并且上下文有助于跨越想法。 尽管如此,它们还是对合格机器的开发构成了一个关键挑战,以理解自然语言并像人类一样使用它。情境性是量子力学中无与伦比的现象,其中已经提出了不同的数学形式主义来理解和推理。在本文中,我们为表现出类似量子的上下文性的放置歧义构建了一个模式。我们使用最近开发的捆起来的理论背景性标准,该标准适用于信号模型。然后,我们利用神经词嵌入引擎bert将模式实例化为自然语言示例,并为实例提取概率分布。结果,在Bert Corpora使用的自然语言中发现了大量的捆上下文示例。我们的希望是,这些示例将为将来的研究铺平道路,并找到将量子计算应用程序扩展到自然语言处理的方法。
Ambiguities of natural language do not preclude us from using it and context helps in getting ideas across. They, nonetheless, pose a key challenge to the development of competent machines to understand natural language and use it as humans do. Contextuality is an unparalleled phenomenon in quantum mechanics, where different mathematical formalisms have been put forwards to understand and reason about it. In this paper, we construct a schema for anaphoric ambiguities that exhibits quantum-like contextuality. We use a recently developed criterion of sheaf-theoretic contextuality that is applicable to signalling models. We then take advantage of the neural word embedding engine BERT to instantiate the schema to natural language examples and extract probability distributions for the instances. As a result, plenty of sheaf-contextual examples were discovered in the natural language corpora BERT utilises. Our hope is that these examples will pave the way for future research and for finding ways to extend applications of quantum computing to natural language processing.