论文标题
两个组件3D原子玻色网凝结物支持复杂的稳定模式
Two-Component 3D Atomic Bose-Einstein Condensates Support Complex Stable Patterns
论文作者
论文摘要
我们报告了非线性schr {Ö} dinger类型的三维多组分非线性波系统中复杂,带电和频谱稳定状态的计算发现。虽然我们的计算与抛物线陷阱中的两个成分原子玻色子凝结物有关,但我们的方法可以广泛应用于偏微分方程的高维非线性系统。所谓的通缩技术与仔细选择初始猜测的结合可以计算出前所未有的图案广度,包括结合涡旋线,戒指,星星和``Vortex Labyrinths''的模式。尽管它们的复杂性,但通过Bogolyubov-De Gennes光谱分析和数值演化模拟证实,它们可能会动态稳健,并且可以对实验观察。
We report the computational discovery of complex, topologically charged, and spectrally stable states in three-dimensional multi-component nonlinear wave systems of nonlinear Schr{ö}dinger type. While our computations relate to two-component atomic Bose-Einstein condensates in parabolic traps, our methods can be broadly applied to high-dimensional, nonlinear systems of partial differential equations. The combination of the so-called deflation technique with a careful selection of initial guesses enables the computation of an unprecedented breadth of patterns, including ones combining vortex lines, rings, stars, and ``vortex labyrinths''. Despite their complexity, they may be dynamically robust and amenable to experimental observation, as confirmed by Bogolyubov-de Gennes spectral analysis and numerical evolution simulations.