论文标题

量子化学的可伸缩神经量子状态体系结构

Scalable neural quantum states architecture for quantum chemistry

论文作者

Zhao, Tianchen, Stokes, James, Veerapaneni, Shravan

论文摘要

量子状态的神经网络表示的变分优化已成功地用于解决相互作用的费米子问题。尽管发展迅速,但在考虑大规模分子时会出现巨大的可伸缩性挑战,这些分子与非局部相互作用的量子自旋汉密尔顿人相对应,这些量子旋转汉密尔顿人由数千甚至数百万的保利操作员组成。在这项工作中,我们引入了可扩展的并行化策略,以改善基于神经网络的量子量蒙特卡洛计算,以用于Ab-Initio量子化学应用。我们建立了由GPU支持的局部能量并行性,以计算对潜在复杂分子的哈密顿量的优化目标。使用自回旋抽样技术,我们证明了实现CCSD基线目标能量所需的壁锁定时间的系统改进。通过将旋转汉密尔顿人的结构适应自回归抽样顺序,进一步提高了性能。与经典的近似方法相比,该算法实现了有希望的性能,并且比现有基于神经网络的方法具有运行时间和可伸缩性优势。

Variational optimization of neural-network representations of quantum states has been successfully applied to solve interacting fermionic problems. Despite rapid developments, significant scalability challenges arise when considering molecules of large scale, which correspond to non-locally interacting quantum spin Hamiltonians consisting of sums of thousands or even millions of Pauli operators. In this work, we introduce scalable parallelization strategies to improve neural-network-based variational quantum Monte Carlo calculations for ab-initio quantum chemistry applications. We establish GPU-supported local energy parallelism to compute the optimization objective for Hamiltonians of potentially complex molecules. Using autoregressive sampling techniques, we demonstrate systematic improvement in wall-clock timings required to achieve CCSD baseline target energies. The performance is further enhanced by accommodating the structure of resultant spin Hamiltonians into the autoregressive sampling ordering. The algorithm achieves promising performance in comparison with the classical approximate methods and exhibits both running time and scalability advantages over existing neural-network based methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源