论文标题

增强驾驶员行为模型,用于高保真仿真研究崩溃检测算法

Augmented Driver Behavior Models for High-Fidelity Simulation Study of Crash Detection Algorithms

论文作者

Jami, Ahura, Razzaghpour, Mahdi, Alnuweiri, Hussein, Fallah, Yaser P.

论文摘要

为连接和自动化车辆(CAVS)开发安全性和效率应用需要大量的测试和评估。在关键和危险情况下对这些系统的运行的需求使他们的评估负担非常昂贵,可能危险且耗时。作为替代方案,研究人员试图使用仿真平台研究和评估其算法和设计。建模驾驶员或人类操作员在骑士或其他与他们相互作用的车辆中的行为是此类模拟的主要挑战之一。虽然为人类行为开发一个完美的模型是一项具有挑战性的任务和一个开放的问题,但我们向模拟器中用于驾驶员行为的当前模型提供了显着的增强。在本文中,我们为混合运输系统提供了一个仿真平台,其中包括人类驱动和自动化车辆。此外,我们分解了人类驾驶任务,并提供了模拟大规模交通情况的模块化方法,从而可以彻底研究自动化和主动的安全系统。通过互连模块的这种表示形式提供了一个可以调节的人体解剖系统,以代表不同类别的驱动程序。此外,我们分析了一个大型驾驶数据集以提取表达参数,以最好地描述不同的驾驶特性。最后,我们在模拟器中重新创建了类似密集的交通情况,并对各种人类特异性和系统特异性因素进行了彻底的分析,研究了它们对交通网络绩效和安全性的影响。

Developing safety and efficiency applications for Connected and Automated Vehicles (CAVs) require a great deal of testing and evaluation. The need for the operation of these systems in critical and dangerous situations makes the burden of their evaluation very costly, possibly dangerous, and time-consuming. As an alternative, researchers attempt to study and evaluate their algorithms and designs using simulation platforms. Modeling the behavior of drivers or human operators in CAVs or other vehicles interacting with them is one of the main challenges of such simulations. While developing a perfect model for human behavior is a challenging task and an open problem, we present a significant augmentation of the current models used in simulators for driver behavior. In this paper, we present a simulation platform for a hybrid transportation system that includes both human-driven and automated vehicles. In addition, we decompose the human driving task and offer a modular approach to simulating a large-scale traffic scenario, allowing for a thorough investigation of automated and active safety systems. Such representation through Interconnected modules offers a human-interpretable system that can be tuned to represent different classes of drivers. Additionally, we analyze a large driving dataset to extract expressive parameters that would best describe different driving characteristics. Finally, we recreate a similarly dense traffic scenario within our simulator and conduct a thorough analysis of various human-specific and system-specific factors, studying their effect on traffic network performance and safety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源