论文标题
奇妙的压缩和循环作用的理性曲线
Wonderful compactifications and rational curves with cyclic action
论文作者
论文摘要
我们证明,在我们以前的工作中构建的循环作用的合理曲线的模量空间可实现,是对投射空间产物中超平面布置的补充的绝妙压实。通过证明对如此奇妙的紧凑型的一般结果,我们得出结论,这种模量空间与明确的复合品种(可以将其风扇理解为模量空间的热带版本)等同于,其盘子的计算随之而来。
We prove that the moduli space of rational curves with cyclic action, constructed in our previous work, is realizable as a wonderful compactification of the complement of a hyperplane arrangement in a product of projective spaces. By proving a general result on such wonderful compactifications, we conclude that this moduli space is Chow-equivalent to an explicit toric variety (whose fan can be understood as a tropical version of the moduli space), from which a computation of its Chow ring follows.