论文标题
使用1D卷积神经网络从数字化的心电图打印输出中检测COVID-19
Detecting COVID-19 from digitized ECG printouts using 1D convolutional neural networks
论文作者
论文摘要
COVID-19大流行已经暴露了全球医疗服务的脆弱性,提出了开发新型工具以提供快速且具有成本效益的筛查和诊断的需求。临床报告表明,Covid-19感染可能会导致心脏损伤,心电图(ECG)可以作为Covid-19的诊断生物标志物。这项研究旨在利用ECG信号自动检测Covid-19。我们提出了一种从ECG纸记录中提取ECG信号的新方法,然后将其送入一维卷积神经网络(1D-CNN)中,以学习和诊断疾病。为了评估数字信号的质量,标记了基于纸张的ECG图像中的R峰。之后,将从每个图像计算的RR间隔与相应数字化信号的RR间隔进行比较。 COVID-19 ECG图像数据集上的实验表明,提出的数字化方法能够正确捕获原始信号,平均绝对误差为28.11 ms。 Our proposed 1D-CNN model, which is trained on the digitized ECG signals, allows identifying individuals with COVID-19 and other subjects accurately, with classification accuracies of 98.42%, 95.63%, and 98.50% for classifying COVID-19 vs. Normal, COVID-19 vs. Abnormal Heartbeats, and COVID-19 vs. other classes, respectively.此外,提出的方法还可以实现高级绩效的多分类任务。我们的发现表明,经过数字化ECG信号训练的深度学习系统可以作为诊断Covid-19的潜在工具。
The COVID-19 pandemic has exposed the vulnerability of healthcare services worldwide, raising the need to develop novel tools to provide rapid and cost-effective screening and diagnosis. Clinical reports indicated that COVID-19 infection may cause cardiac injury, and electrocardiograms (ECG) may serve as a diagnostic biomarker for COVID-19. This study aims to utilize ECG signals to detect COVID-19 automatically. We propose a novel method to extract ECG signals from ECG paper records, which are then fed into a one-dimensional convolution neural network (1D-CNN) to learn and diagnose the disease. To evaluate the quality of digitized signals, R peaks in the paper-based ECG images are labeled. Afterward, RR intervals calculated from each image are compared to RR intervals of the corresponding digitized signal. Experiments on the COVID-19 ECG images dataset demonstrate that the proposed digitization method is able to capture correctly the original signals, with a mean absolute error of 28.11 ms. Our proposed 1D-CNN model, which is trained on the digitized ECG signals, allows identifying individuals with COVID-19 and other subjects accurately, with classification accuracies of 98.42%, 95.63%, and 98.50% for classifying COVID-19 vs. Normal, COVID-19 vs. Abnormal Heartbeats, and COVID-19 vs. other classes, respectively. Furthermore, the proposed method also achieves a high-level of performance for the multi-classification task. Our findings indicate that a deep learning system trained on digitized ECG signals can serve as a potential tool for diagnosing COVID-19.