论文标题

$ t \ bar {t} $作为特征流

$T\bar{T}$ flow as characteristic flows

论文作者

Hou, Jue

论文摘要

我们表明,特征方法在$ t \ bar {t} $和相关变形上提供了有力的新观点。以前,特征方法已应用于$ t \ bar {t} $ - 变形主要用于求解汉堡方程,该方程控制了\ emph {Quantum}频谱的变形。在当前的工作中,我们使用此方法研究\ emph {classical}变形数量,并表明$ t \ bar {t} $流可以看作是特征流。利用这一观点,我们重新获得了许多重要的已知结果,并获得了有趣的新结果。我们证明了坐标的动态变化与$ t \ bar {t} $变形的通用轻度量规方法之间的等价性。我们找到了$ t \ bar {t} $的lagrangians的变形拉格朗日 - 喜欢较高尺寸的变形,$(t \ bar {t})^α$ - $ a $ - 具有通用$α$的形式,概括了ARXIV的最新成绩:2206.03415和Arxiv:2206.03415和Arxiv:2206.106.10515。

We show that method of characteristics provides a powerful new point of view on $T\bar{T}$-and related deformations. Previously, the method of characteristics has been applied to $T\bar{T}$-deformation mainly to solve Burgers' equation, which governs the deformation of the \emph{quantum} spectrum. In the current work, we study \emph{classical} deformed quantities using this method and show that $T\bar{T}$ flow can be seen as a characteristic flow. Exploiting this point of view, we re-derive a number of important known results and obtain interesting new ones. We prove the equivalence between dynamical change of coordinates and the generalized light-cone gauge approaches to $T\bar{T}$-deformation. We find the deformed Lagrangians for a class of $T\bar{T}$-like deformations in higher dimensions and the $(T\bar{T})^α$-deformation in 2d with generic $α$, generalizing recent results in arXiv:2206.03415 and arXiv:2206.10515.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源