论文标题

用$ {\ bf 10^{ - 28}} $量子精度测量二维力量 - 牛顿稳定性

Quantum precision measurement of two-dimensional forces with ${\bf 10^{-28}}$-Newton stability

论文作者

Guo, Xinxin, Yu, Zhongcheng, Wei, Fansu, Jin, Shengjie, Chen, Xuzong, Li, Xiaopeng, Zhang, Xibo, Zhou, Xiaoji

论文摘要

对矢量力的高精度感应对基础研究和技术应用都有广泛的影响,例如检查真空波动的检查\ cite {casimir09rmp}以及检测纳米结构的表面粗糙度\ cite \ cite {revmodphys.89.035002}。近年来,在传感迅速前进的量子技术方面传感交替的电磁力方面取得了很大进展 - 在检测敏感性的敏感性方面已取得了改善{schreppler1486,shaniv2017,shaniv2017,gilmore673},而远程范围均与固定的速度}相关的测量。稳定性很少得到证明。在这里,基于由光学晶格限制的量子原子物质波,我们通过对倒数空间中的相干波力力学进行成像,对静态{电磁}力进行精确测量。我们实现了$ 2.30(8)\ times 10^{ - 26} $ n/$ \ sqrt {\ rm \ bf hz} $的最新测量灵敏度。在力的两个空间成分中观察到了$ 10^{ - 28} $ n的长期稳定性,该力允许在毫米距离处探测原子范德华力\ cite {naturenanoscanning}。作为进一步的说明性应用,我们使用原子传感器来校准实验中施加的交替电磁力的控制精度。我们方法的未来发展具有提供前所未有的原子量子力传感技术的希望。

High-precision sensing of vectorial forces has broad impact on both fundamental research and technological applications such as the examination of vacuum fluctuations \cite{casimir09rmp} and the detection of surface roughness of nanostructures \cite{RevModPhys.89.035002}. Recent years have witnessed much progress on sensing alternating electromagnetic forces for the rapidly advancing quantum technology -- orders-of-magnitude improvement has been accomplished on the detection sensitivity with atomic sensors \cite{Schreppler1486,Shaniv2017,Gilmore673}, whereas precision measurement of static {electromagnetic} forces lags far behind with the corresponding long-term stability rarely demonstrated. Here, based on quantum atomic matter waves confined by an optical lattice, we perform precision measurement of static {electromagnetic} forces by imaging coherent wave mechanics in the reciprocal space. We achieve a state-of-the-art measurement sensitivity of $ 2.30(8)\times 10^{-26}$ N/$\sqrt{\rm \bf Hz}$. Long-term stabilities on the order of $10^{-28}$ N are observed in the two spatial components of a force, which allows probing atomic Van der Waals forces at a millimeter distance \cite{NatureNanoScanning}. As a further illustrative application, we use our atomic sensor to calibrate the control precision of an alternating electromagnetic force applied in the experiment. Future developments of our method hold promise for delivering unprecedented atom-based quantum force sensing technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源