论文标题

动态系统的学习理论

Learning theory for dynamical systems

论文作者

Berry, Tyrus, Das, Suddhasattwa

论文摘要

建模和预测动态系统的任务是最古老的问题之一,它仍然具有挑战性。从广义上讲,此任务具有两个子任务 - 从部分观察结果中提取完整的动态信息;然后从这些信息中明确学习动态。我们提出了一个数学框架,其中动态信息以嵌入形式表示。该框架使用空间,地图和通勤的语言结合了两个子任务。该框架还统一了两个最常见的学习范式 - 延迟坐标和储层计算。我们将此框架用作对重建系统的其他两个研究的平台 - 它的动态稳定性;以及迭代下误差的增长。我们表明,这些问题与基础系统的更基本特性深深联系 - 基本动力学上基质共体的行为,其非均匀的双曲线行为及其相关性的衰减。因此,我们的框架弥合了动态建模的普遍观察到的行为之间的差距。以及动力学固有的频谱,差异和偏僻的特性。

The task of modelling and forecasting a dynamical system is one of the oldest problems, and it remains challenging. Broadly, this task has two subtasks - extracting the full dynamical information from a partial observation; and then explicitly learning the dynamics from this information. We present a mathematical framework in which the dynamical information is represented in the form of an embedding. The framework combines the two subtasks using the language of spaces, maps, and commutations. The framework also unifies two of the most common learning paradigms - delay-coordinates and reservoir computing. We use this framework as a platform for two other investigations of the reconstructed system - its dynamical stability; and the growth of error under iterations. We show that these questions are deeply tied to more fundamental properties of the underlying system - the behavior of matrix cocycles over the base dynamics, its non-uniform hyperbolic behavior, and its decay of correlations. Thus, our framework bridges the gap between universally observed behavior of dynamics modelling; and the spectral, differential and ergodic properties intrinsic to the dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源