论文标题
使用单细胞转录组学对细胞周期分析的计算挑战
Computational challenges of cell cycle analysis using single cell transcriptomics
论文作者
论文摘要
细胞周期是最基本的生物学过程之一,对于理解正常生理和各种病理(例如癌症)很重要。单细胞RNA测序技术提供了一个机会,可以在前所未有的条件范围(细胞类型和扰动)中分析细胞周期转录组动力学,并具有数千个公开可用的数据集。在这里,我们在此类分析中回顾了主要的计算任务:1)鉴定细胞周期阶段,2)伪时间推理,3)鉴定和分析与细胞周期相关基因的鉴定和分析,4)消除细胞周期效应,5)识别和分析G0(Quiescent)细胞。我们回顾了使用SCRNA-Seq数据今天可用于细胞周期分析的17个软件包。尽管取得了巨大进展,但对于所有上述任务,这些包裹都无法产生完整而可靠的结果。现有包装的主要困难之一是区分细胞周期转录组动力学的两种模式:胚胎干细胞的正常和特征(ESC),后者由许多癌细胞系共享。此外,某些细胞系的特征是两个亚群的混合物,一个是遵循标准和一个ESC样细胞周期的混合物,这使得分析更具挑战性。总之,我们讨论了与细胞周期相关的单细胞转录组分析的困难,并为使用现有方法提供了一定的指南。
The cell cycle is one of the most fundamental biological processes important for understanding normal physiology and various pathologies such as cancer. Single cell RNA sequencing technologies give an opportunity to analyse the cell cycle transcriptome dynamics in an unprecedented range of conditions (cell types and perturbations), with thousands of publicly available datasets. Here we review the main computational tasks in such analysis: 1) identification of cell cycle phases, 2) pseudotime inference, 3) identification and profiling of cell cycle-related genes, 4) removing cell cycle effect, 5) identification and analysis of the G0 (quiescent) cells. We review seventeen software packages that are available today for the cell cycle analysis using scRNA-seq data. Despite huge progress achieved, none of the packages can produce complete and reliable results with respect to all aforementioned tasks. One of the major difficulties for existing packages is distinguishing between two patterns of cell cycle transcriptomic dynamics: normal and characteristic for embryonic stem cells (ESC), with the latter one shared by many cancer cell lines. Moreover, some cell lines are characterized by a mixture of two subpopulations, one following the standard and one ESC-like cell cycle, which makes the analysis even more challenging. In conclusion, we discuss the difficulties of the analysis of cell cycle-related single cell transcriptome and provide certain guidelines for the use of the existing methods.