论文标题

Farey Tree和Devil的超快激光器中的频率锁定呼吸器的楼梯

Farey tree and devil's staircase of frequency-locked breathers in ultrafast lasers

论文作者

Wu, Xiuqi, Zhang, Ying, Peng, Junsong, Boscolo, Sonia, Finot, Christophe, Zeng, Heping

论文摘要

具有两个竞争频率的非线性系统显示锁定或共振。在激光器中,两个相互作用的频率可以是腔重复率和向系统外部应用的频率。相反,激光中的呼吸振荡的激发自然会触发系统中的第二个特征频率,因此显示了腔重复率与呼吸频率之间的竞争。然而,缺少呼吸孤子和频率锁定之间的链接。在这里,我们演示了呼吸激光器的Farey分数的频率锁定。绕组数字显示了Farey树的层次结构和魔鬼楼梯的结构。离散激光模型的数值模拟证实了实验结果。因此,呼吸激光器可以用作简单的模型系统,以探索非线性系统的通用同步动力学。锁定的呼吸频率具有较高的信噪比,并可能引起密集的射频梳子,这对于应用程序很有吸引力。

Nonlinear systems with two competing frequencies show locking or resonances. In lasers, the two interacting frequencies can be the cavity repetition rate and a frequency externally applied to the system. Conversely, the excitation of breather oscillations in lasers naturally triggers a second characteristic frequency in the system, therefore showing competition between the cavity repetition rate and the breathing frequency. Yet, the link between breathing solitons and frequency locking is missing. Here we demonstrate frequency locking at Farey fractions of a breather laser. The winding numbers show the hierarchy of the Farey tree and the structure of a devil's staircase. Numerical simulations of a discrete laser model confirm the experimental findings. The breather laser may therefore serve as a simple model system to explore universal synchronization dynamics of nonlinear systems. The locked breathing frequencies feature high signal-to-noise ratio and can give rise to dense radio-frequency combs, which are attractive for applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源