论文标题
深度提示和语义边缘对室内移动性的相对重要性,使用模拟的假肢构想在沉浸式虚拟现实中
The Relative Importance of Depth Cues and Semantic Edges for Indoor Mobility Using Simulated Prosthetic Vision in Immersive Virtual Reality
论文作者
论文摘要
视觉神经性疾病(仿生的眼睛)具有治疗经常导致低视力或完全失明的退行性眼部疾病的潜力。这些设备依靠外部摄像头来捕获视觉场景,然后将其翻译为将刺激模式转换为发送到眼睛中植入物的电气刺激模式。为了突出现场中更有意义的信息,最近的研究测试了基于深度学习的计算机视觉技术的有效性,例如深度估算以突出附近的障碍物(深度模式)和语义边缘检测以概述场景中的重要对象(Edgesonly模式)。但是,没有人试图通过将两者(edgeAndDepth)呈现在一起,或者通过使用户能够在它们之间灵活切换(edgeSordeptth)来结合两者。在这里,我们在沉浸式虚拟现实(VR)环境中使用了神经生物学启发的模拟假体视觉(SPV)模型来测试语义边缘和相对深度线索的相对重要性,以支持避免障碍和识别对象的能力。我们发现,参与者在避免使用基于深度的线索而不是仅依靠边缘信息的障碍方面做得更好,并且大约一半的参与者更喜欢在模式之间切换灵活性(edgeSordeptth)。这项研究强调了深度线索对于SPV移动性的相对重要性,并且是迈向视觉神经假体迈出的重要第一步,该神经假体使用计算机视觉来改善用户的场景理解。
Visual neuroprostheses (bionic eyes) have the potential to treat degenerative eye diseases that often result in low vision or complete blindness. These devices rely on an external camera to capture the visual scene, which is then translated frame-by-frame into an electrical stimulation pattern that is sent to the implant in the eye. To highlight more meaningful information in the scene, recent studies have tested the effectiveness of deep-learning based computer vision techniques, such as depth estimation to highlight nearby obstacles (DepthOnly mode) and semantic edge detection to outline important objects in the scene (EdgesOnly mode). However, nobody has attempted to combine the two, either by presenting them together (EdgesAndDepth) or by giving the user the ability to flexibly switch between them (EdgesOrDepth). Here, we used a neurobiologically inspired model of simulated prosthetic vision (SPV) in an immersive virtual reality (VR) environment to test the relative importance of semantic edges and relative depth cues to support the ability to avoid obstacles and identify objects. We found that participants were significantly better at avoiding obstacles using depth-based cues as opposed to relying on edge information alone, and that roughly half the participants preferred the flexibility to switch between modes (EdgesOrDepth). This study highlights the relative importance of depth cues for SPV mobility and is an important first step towards a visual neuroprosthesis that uses computer vision to improve a user's scene understanding.