论文标题

狭窄无序赛道中驱动的粒子分散

Driven particle dispersion in narrow disordered racetracks

论文作者

Elías, Federico, Kolton, Alejandro B.

论文摘要

我们研究了在一系列狭窄的轨道中均匀驱动的颗粒的疾病诱导的确定性分散。对于患有淬火障碍的不同玩具模型,我们获得了稳态平均速度$ v $的精确分析表达式,并且分散恒定的$ d $ $ d $对于推定的默认阈值以上的任何驱动力$ f $。对于短距离相关的固定力,我们发现在大型驱动器上$ d \ sim 1/v $用于随机场类型的疾病,而随机键型类型的$ d \ sim 1/v^3 $。我们从数值上显示这些结果是可靠的:对于巨大的阻尼颗粒,软颗粒,准尺寸或二维轨道中的颗粒的模型,以及具有两个自由度的模型,具有两个自由度的模型。讨论了跨界和有限温度效应。我们确定的通用特征可能与描述稳定局部对象的波动动力学有关,例如孤子,超导涡流,磁性域壁和天际,以及以准单维轨道阵列驱动的胶体。特别是,$ d $的驱动依赖性似乎是一种敏感的工具,用于表征和评估宿主材料中疾病的性质。

We study the disorder-induced deterministic dispersion of particles uniformly driven in an array of narrow tracks. For different toy models with quenched disorder we obtain exact analytical expressions for the steady-state mean velocity $v$ and the dispersion constant $D$ for any driving force $f$ above a putative depinning threshold. For short-range correlated pinning forces we find that at large drives $D\sim 1/v$ for random-field type of disorder while $D \sim 1/v^3$ for the random-bond type. We show numerically that these results are robust: the same scaling holds for models of massive damped particles, soft particles, particles in quasi-one dimensional or two dimensional tracks, and for a model of a magnetic domain wall with two degrees of freedom driven either by electrical current or magnetic field. Crossover and finite temperature effects are discussed. The universal features we identify may be relevant for describing the fluctuating dynamics of stable localized objects such solitons, superconducting vortices, magnetic domain walls and skyrmions, and colloids driven in quasi one-dimensional track arrays. In particular, the drive dependence of $D$ appears as a sensitive tool for characterizing and assessing the nature of disorder in the host materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源