论文标题
恒星形成分子云和银河核中的超埃丁顿黑洞的生长:会发生吗?
Hyper-Eddington Black Hole Growth in Star-Forming Molecular Clouds and Galactic Nuclei: Can It Happen?
论文作者
论文摘要
超级质量黑洞(BHS)的形成仍然是理论上的挑战。在许多模型中,尤其是从恒星遗物“种子”开始的模型中,这需要持续的超级 - 埃德丁顿积聚。尽管研究表明,BHS可能会违反来自较大尺度的足够“加油”的积聚磁盘量表的Eddington限制,但尚不清楚BHS是否实际上可以从周围的ISM中捕获足够的气体。我们在一套多物理学高分辨率模拟中探讨了这一点,以磁化,恒星形成密集的气体复合物中的BH增长,包括来自辐射,恒星质量损坏和超新星的动态恒星反馈,探索种子种子的种子群体,质量$ \ sim $ \ sim 1-10^{4} {4} {4} \,m _ {\ odot}在这项最初的研究中,我们忽略了BHS的反馈:因此,这为种子可以维持的增生率设定了强大的上限。我们表明,恒星反馈起着关键作用。 $ \ sim 10^{3} \,m _ {\ odot} \,{\ rm pc^{ - 2}} $的复合物具有低于$ \ sim 10^{3} \,m _ {\ odot} \,均受到低星形形成效率的破坏,因此为BH增长提供了较差的环境。但是在浓密的云络合物中,早期的恒星反馈不会迅速破坏云,而是产生强烈的冲击和密集的团块,从而使$ \ sim 1 \%1 \%$ $的随机定位种子可以遇到一个浓密的团块,遇到较低的相对速度和较低的相对速度和生产产物失控,超级 - 埃德丁顿(Hyper-Eddington)的增长(增长了巨大的增长)。值得注意的是,在这些条件下的质量生长几乎与初始BH质量无关,即使对于恒星质量种子,也可以快速的IMBH形成。这为失控BH增长定义了一套必要的(但可能还不够)的标准:我们为不同ISM条件下失控增长的可能性提供了分析估计。
Formation of supermassive black holes (BHs) remains a theoretical challenge. In many models, especially beginning from stellar relic "seeds," this requires sustained super-Eddington accretion. While studies have shown BHs can violate the Eddington limit on accretion disk scales given sufficient "fueling" from larger scales, what remains unclear is whether or not BHs can actually capture sufficient gas from their surrounding ISM. We explore this in a suite of multi-physics high-resolution simulations of BH growth in magnetized, star-forming dense gas complexes including dynamical stellar feedback from radiation, stellar mass-loss, and supernovae, exploring populations of seeds with masses $\sim 1-10^{4}\,M_{\odot}$. In this initial study, we neglect feedback from the BHs: so this sets a strong upper limit to the accretion rates seeds can sustain. We show that stellar feedback plays a key role. Complexes with gravitational pressure/surface density below $\sim 10^{3}\,M_{\odot}\,{\rm pc^{-2}}$ are disrupted with low star formation efficiencies so provide poor environments for BH growth. But in denser cloud complexes, early stellar feedback does not rapidly destroy the clouds but does generate strong shocks and dense clumps, allowing $\sim 1\%$ of randomly-initialized seeds to encounter a dense clump with low relative velocity and produce runaway, hyper-Eddington accretion (growing by orders of magnitude). Remarkably, mass growth under these conditions is almost independent of initial BH mass, allowing rapid IMBH formation even for stellar-mass seeds. This defines a necessary (but perhaps not sufficient) set of criteria for runaway BH growth: we provide analytic estimates for the probability of runaway growth under different ISM conditions.