论文标题

关于涉及时间依赖系数的未耦合时空分数操作员的反问题

On inverse problems for uncoupled space-time fractional operators involving time-dependent coefficients

论文作者

Li, Li

论文摘要

我们研究了涉及时间依赖系数的未耦合时空分数操作员,并制定了相应的逆问题。我们的目标是从Dirichlet到Neumann地图的外部部分测量中确定可变系数。我们根据分数laplacian的唯一持续性属性来利用Riemann-Liouville和Caputo衍生品的零件公式的集成,以使我们的时空分数操作员得出Runge近似属性。这使我们能够将空间分数但时限运算符的早期独特确定结果扩展到时空分数情况下。

We study the uncoupled space-time fractional operators involving time-dependent coefficients and formulate the corresponding inverse problems. Our goal is to determine the variable coefficients from the exterior partial measurements of the Dirichlet-to-Neumann map. We exploit the integration by parts formula for Riemann-Liouville and Caputo derivatives to derive the Runge approximation property for our space-time fractional operator based on the unique continuation property of the fractional Laplacian. This enables us to extend early unique determination results for space-fractional but time-local operators to the space-time fractional case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源