论文标题
宇宙学新的90 GHz检测器的设计和表征大角度测量师(类)
Design and characterization of new 90 GHz detectors for the Cosmology Large Angular Scale Surveyor (CLASS)
论文作者
论文摘要
宇宙学大尺度测量师(类)是一个对极化敏感的望远镜阵列,位于智利阿塔卡马沙漠的高度为5200 m。类旨在测量宇宙微波背景(CMB)在大角度尺度上的“ e-Mode”(甚至是奇偶校验)和“ B模式”(奇数)极化模式,目的是提高我们对通货膨胀,恢复和暗物质的理解。类别目前正在观察三个望远镜,其中涵盖了四个频带:一个在40 GHz(Q);一个在90 GHz(W1); 150/220 GHz(G)的一个二分性系统。在这些程序中,我们讨论了新的90 GHz检测器的更新设计和LAB表征。新的探测器包括对过渡边缘传感器(TES)BOLOMETER体系结构的设计更改,旨在提高稳定性和光学效率。我们组装并测试了四个新的检测器晶圆,以替换W1焦平面的四个模块。这些探测器已安装到W1望远镜中,并将在2022年澳大利亚冬季获得第一光。我们提出了来自LAB内黑暗和光学测试的电热参数和带通测量。从LAB内的黑暗测试中,我们还测量了所有四个关于类信号带的NEP为12.3 $ \ MATHRM {AW \ SQRT {s}} $,涉及类信号频段,该级信号带低于32 $ \ MATHRM的预期光子NEP {AW \ sqrt {Sqrt {s}} $。因此,我们预计新检测器将受到光子噪声有限。
The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert. CLASS is designed to measure "E-mode" (even parity) and "B-mode" (odd parity) polarization patterns in the Cosmic Microwave Background (CMB) over large angular scales with the aim of improving our understanding of inflation, reionization, and dark matter. CLASS is currently observing with three telescopes covering four frequency bands: one at 40 GHz (Q); one at 90 GHz (W1); and one dichroic system at 150/220 GHz (G). In these proceedings, we discuss the updated design and in-lab characterization of new 90 GHz detectors. The new detectors include design changes to the transition-edge sensor (TES) bolometer architecture, which aim to improve stability and optical efficiency. We assembled and tested four new detector wafers, to replace four modules of the W1 focal plane. These detectors were installed into the W1 telescope, and will achieve first light in the austral winter of 2022. We present electrothermal parameters and bandpass measurements from in-lab dark and optical testing. From in-lab dark tests, we also measure a median NEP of 12.3 $\mathrm{aW\sqrt{s}}$ across all four wafers about the CLASS signal band, which is below the expected photon NEP of 32 $\mathrm{aW\sqrt{s}}$ from the field. We therefore expect the new detectors to be photon noise limited.