论文标题

银河X射线发射与Phox的分解:热气和XRBS的贡献

Decomposition of galactic X-ray emission with Phox: Contributions from hot gas and XRBs

论文作者

Vladutescu-Zopp, Stephan, Biffi, Veronica, Dolag, Klaus

论文摘要

我们提供了一个数值框架,可以通过流体动力学宇宙学模拟研究X射线二元种群的空间和光谱准确表示。我们构建了热气组件的平均光谱,并验证了星系宽X射线光度($ L_ {X} $)与Stellar Mass($ M _ {\ Star} $)以及星形构型(SFR)之间观察到的缩放关系的出现。使用从$(48 \,h^{ - 1} \ Mathrm {CMPC})^3 $的磁性探测器宇宙学模拟的体积$ z = 0.07 $我们生成模拟频谱的$(48 \,h^{ - 1} \ mathrm {cmpc})的模拟星系光环。我们扩展了PHOX代码以说明模拟中的恒星成分,并研究了复合银河系中的贡献。平均X射线光度函数完美地再现至单光子光度限制。比较我们所产生的$ l_ {x} - \ mathrm {sfr} -m _ {\ star} $的X射线二进制文件的关系与处女座星系集群中的现场星系的最新观察结果我们发现我们发现了重大的重叠。调用高质量X射线二进制的金属依赖性模型产生了大量加权恒星金属性与SFR归一化亮度之间的抗相关性。高质量X射线二进制文件的空间分布与模拟星系的恒星形成区域一致,而低质量的X射线二进制组则遵循出色的质量表面密度。 X射线二进制发射是在没有积极积累的中央超质量黑洞的情况下,在2-10 KEV频段中的主要贡献,在0.5-2 KEV频段中贡献了50%的贡献,可与热气体组件匹配。尽管与我们的方法相关,但我们的建模仍与观察结果一致。预测能力和易于扩展的框架对未来的银河X射线光谱进行了巨大价值。

We provide a numerical framework with which spatially and spectrally accurate representations of X-ray binary populations can be studied from hydrodynamical cosmological simulations. We construct average spectra accounting for a hot gas component and verify the emergence of observed scaling relations between galaxy wide X-ray luminosity ($L_{X}$) and stellar mass ($M_{\star}$) as well as star-formation rate (SFR). Using simulated galaxy halos extracted from the $(48\,h^{-1} \mathrm{cMpc})^3$ volume of the Magneticum Pathfinder cosmological simulations at $z = 0.07$ we generate mock spectra with the X-ray photon-simulator Phox. We extend the Phox code to account for the stellar component in the simulation and study the resulting contribution in composite galactic spectra. Average X-ray luminosity functions are perfectly reproduced up to the one-photon luminosity limit. Comparing our resulting $L_{X}-\mathrm{SFR}-M_{\star}$ relation for X-ray binaries with recent observations of field galaxies in the Virgo galaxy cluster we find significant overlap. Invoking a metallicity dependent model for high-mass X-ray binaries yields an anti-correlation between mass-weighted stellar metallicity and SFR normalized luminosity. The spatial distribution of high-mass X-ray binaries coincides with star-formation regions of simulated galaxies while low-mass X-ray binaries follow the stellar mass surface density. X-ray binary emission is the dominant contribution in the 2-10 keV band in the absence of an actively accreting central super-massive black hole with 50% contribution in the 0.5-2 keV band rivaling the hot gas component. Our modelling remains consistent with observations despite uncertainties connected to our approach. The predictive power and easily extendable framework hold great value for future investigations of galactic X-ray spectra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源