论文标题
使用光谱反射率从RGB面部视频中进行视觉心率估算
Visual Heart Rate Estimation from RGB Facial Video using Spectral Reflectance
论文作者
论文摘要
面部视频中心率的估计在医疗和健身行业中有许多应用。此外,它在游戏领域也变得有用。已经提出了几种方法,可以从面部视频中无缝地获得心率,但是这些方法在处理运动和照明伪影方面存在问题。在这项工作中,我们使用用户的光谱反射率提出了一个可靠的人力资源估计框架,这使运动和照明干扰稳健。我们采用基于深度学习的框架,例如更快的RCNNS来执行面部检测,而不是先前方法使用的中提琴琼斯算法。我们在Mahnob HCI数据集上评估了我们的方法,并发现所提出的方法能够胜过以前的方法。从面部视频中估计心率在医疗和健身行业中有许多应用。此外,它在游戏领域也变得有用。已经提出了几种方法,可以从面部视频中无缝地获得心率,但是这些方法在处理运动和照明伪影方面存在问题。在这项工作中,我们使用用户的光谱反射率提出了一个可靠的人力资源估计框架,这使运动和照明干扰稳健。我们采用基于深度学习的框架,例如更快的RCNNS来执行面部检测,而不是先前方法使用的中提琴算法。我们在Mahnob HCI数据集上评估了我们的方法,并发现所提出的方法能够超过以前的方法。
Estimation of the Heart rate from the facial video has a number of applications in the medical and fitness industries. Additionally, it has become useful in the field of gaming as well. Several approaches have been proposed to seamlessly obtain the Heart rate from the facial video, but these approaches have had issues in dealing with motion and illumination artifacts. In this work, we propose a reliable HR estimation framework using the spectral reflectance of the user, which makes it robust to motion and illumination disturbances. We employ deep learning-based frameworks such as Faster RCNNs to perform face detection as opposed to the Viola Jones algorithm employed by previous approaches. We evaluate our method on the MAHNOB HCI dataset and found that the proposed method is able to outperform previous approaches.Estimation of the Heart rate from facial video has a number of applications in the medical and the fitness industries. Additionally, it has become useful in the field of gaming as well. Several approaches have been proposed to seamlessly obtain the Heart rate from the facial video, but these approaches have had issues in dealing with motion and illumination artifacts. In this work, we propose a reliable HR estimation framework using the spectral reflectance of the user, which makes it robust to motion and illumination disturbances. We employ deep learning-based frameworks such as Faster RCNNs to perform face detection as opposed to the Viola-Jones algorithm employed by previous approaches. We evaluate our method on the MAHNOB HCI dataset and found that the proposed method is able to outperform previous approaches.