论文标题
与阿尔茨海默氏病预测的结构功能注意网络的多尺度自动编码器
Multiscale Autoencoder with Structural-Functional Attention Network for Alzheimer's Disease Prediction
论文作者
论文摘要
通过多模式神经影像学数据的诊断和分析,机器学习算法的应用是当前的研究热点。学习大脑区域信息并从各种磁共振图像(MRI)中发现疾病机制仍然是一个巨大的挑战。在本文中,我们提出了一种简单但高效的端到端模型,这是一种具有结构性功能注意力网络(MASAN)的多尺度自动编码器(MASAN),以使用T1加权成像(T1WI)和功能性MRI(fMRI)提取与疾病相关的表示。基于注意力机制,我们的模型有效地了解了大脑结构和功能的融合特征,并最终接受了对阿尔茨海默氏病分类的训练。与完全卷积的网络相比,所提出的方法在准确性和精度方面都进一步提高,导致3%至5%。通过可视化提取的嵌入,经验结果表明,与假定的广告相关的大脑区域(例如海马,杏仁核等)的权重较高,并且这些区域在解剖学研究中的信息性更高。相反,小脑,顶叶,丘脑,脑干和腹侧脑膜的预测性贡献很小。
The application of machine learning algorithms to the diagnosis and analysis of Alzheimer's disease (AD) from multimodal neuroimaging data is a current research hotspot. It remains a formidable challenge to learn brain region information and discover disease mechanisms from various magnetic resonance images (MRI). In this paper, we propose a simple but highly efficient end-to-end model, a multiscale autoencoder with structural-functional attention network (MASAN) to extract disease-related representations using T1-weighted Imaging (T1WI) and functional MRI (fMRI). Based on the attention mechanism, our model effectively learns the fused features of brain structure and function and finally is trained for the classification of Alzheimer's disease. Compared with the fully convolutional network, the proposed method has further improvement in both accuracy and precision, leading by 3% to 5%. By visualizing the extracted embedding, the empirical results show that there are higher weights on putative AD-related brain regions (such as the hippocampus, amygdala, etc.), and these regions are much more informative in anatomical studies. Conversely, the cerebellum, parietal lobe, thalamus, brain stem, and ventral diencephalon have little predictive contribution.