论文标题

两倍量子热机的代数方法

Algebraic approach to a two-qubit quantum thermal machine

论文作者

Duriez, A. C., Martínez-Tibaduiza, D., Khoury, A. Z.

论文摘要

用于解决时间依赖的哈密顿量的代数方法用于研究量子热机的性能。我们研究了由两个耦合Q位形成的发动机的热力学特性,执行了OTTO循环。热相互作用在不同温度下以两个浴缸的形式出现,而工作与与时间相关的磁场的相互作用有关,该磁场在强度和方向上变化。对于耦合,我们考虑1-D各向同性的海森堡模型,该模型使我们能够通过$ \ Mathfrak {su}(2)$ lie代数在Triplet子空间中描述系统。我们检查了周期的温度和频率的不同设置,并研究发动机的相应操作制度。最后,我们在不同的时间频率变化的时间下研究发动机效率,从而插入了突然和绝热限制。

Algebraic methods for solving time dependent Hamiltonians are used to investigate the performance of quantum thermal machines. We investigate the thermodynamic properties of an engine formed by two coupled q-bits, performing an Otto cycle. The thermal interaction occurs with two baths at different temperatures, while work is associated with the interaction with an arbitrary time-dependent magnetic field that varies in intensity and direction. For the coupling, we consider the 1-d isotropic Heisenberg model, which allows us to describe the system by means of the irreducible representation of the $\mathfrak{su}(2)$ Lie algebra within the triplet subspace. We inspect different settings of the temperatures and frequencies of the cycle and investigate the corresponding operation regimes of the engine. Finally, we numerically investigate the engine efficiency under a time varying Rabi frequency, interpolating the abrupt and adiabatic limits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源