论文标题
通过基于方面的情感分析的镜头来表征2022 Russo-Ikrainian冲突:数据集,方法论和初步发现
Characterizing the 2022 Russo-Ukrainian Conflict Through the Lenses of Aspect-Based Sentiment Analysis: Dataset, Methodology, and Preliminary Findings
论文作者
论文摘要
在线社交网络(OSN)在当今世界中起着至关重要的作用。一方面,他们允许言论自由,信息共享和社会动机组织引用一些。另一方面,它们是传播虚假信息,仇恨言论和支持宣传的选择工具。由于这些原因,OSN的数据挖掘和分析旨在检测可能武装社会的虚假信息运动,并且通常会毒害国家的民主姿势,是选举,大流行和冲突等关键事件中的重要活动。在本文中,我们在Twitter上研究了2022年的Russo-Ukrainian冲突,Twitter是最常用的OSN之一。我们对与该主题相关的55多个推文的数据集进行了定量和定性分析,由1.8百万唯一的用户生成。通过利用统计分析技术和基于方面的情感分析(ABSA),我们发现了用户情绪中收集的数据和异常模式中的隐藏见解,在某些情况下,在某些情况下,在其他情况下,在其他情况下证实了对冲突的共同信念。特别是,基于我们的发现,并且与某些主流媒体中的建议相反,没有证据表明大规模虚假信息运动。但是,我们已经在特定帐户的行为以及某些受试者的情感趋势中确定了几个异常,这些主题代表了该领域进一步分析的起点。采用的技术,数据的可用性,实验的可复制性和初步发现,除了自己有趣之外,还为进一步研究领域的研究铺平了道路。
Online social networks (OSNs) play a crucial role in today's world. On the one hand, they allow free speech, information sharing, and social-movements organization, to cite a few. On the other hand, they are the tool of choice to spread disinformation, hate speech, and to support propaganda. For these reasons, OSNs data mining and analysis aimed at detecting disinformation campaigns that may arm the society and, more in general, poison the democratic posture of states, are essential activities during key events such as elections, pandemics, and conflicts. In this paper, we studied the 2022 Russo-Ukrainian conflict on Twitter, one of the most used OSNs. We quantitatively and qualitatively analyze a dataset of more than 5.5+ million tweets related to the subject, generated by 1.8+ million unique users. By leveraging statistical analysis techniques and aspect-based sentiment analysis (ABSA), we discover hidden insights in the collected data and abnormal patterns in the users' sentiment that in some cases confirm while in other cases disprove common beliefs on the conflict. In particular, based on our findings and contrary to what suggested in some mainstream media, there is no evidence of massive disinformation campaigns. However, we have identified several anomalies in the behavior of particular accounts and in the sentiment trend for some subjects that represent a starting point for further analysis in the field. The adopted techniques, the availability of the data, the replicability of the experiments, and the preliminary findings, other than being interesting on their own, also pave the way to further research in the domain.