论文标题

通过变质生成对抗网络对产后脑磁共振图像的纵向预测

Longitudinal Prediction of Postnatal Brain Magnetic Resonance Images via a Metamorphic Generative Adversarial Network

论文作者

Huang, Yunzhi, Ahmad, Sahar, Han, Luyi, Wang, Shuai, Wu, Zhengwang, Lin, Weili, Li, Gang, Wang, Li, Yap, Pew-Thian

论文摘要

由于受试者辍学或扫描失败,在纵向研究中不可避免地扫描是不可避免的。在本文中,我们提出了一个深度学习框架,以预测获得的扫描中缺失的扫描,以适应纵向婴儿研究。由于快速的对比和结构变化,特别是在生命的第一年,对婴儿脑MRI的预测具有挑战性。我们引入了值得信赖的变质生成对抗网络(MGAN),用于将婴儿脑MRI从一个时间点转换为另一个时间点。 MGAN具有三个关键特征:(i)图像翻译利用空间和频率信息,以提供详细信息的映射; (ii)将注意力集中在具有挑战性地区的质量指导学习策略。 (iii)多尺度杂种损失函数,可改善组织对比度和结构细节的翻译。实验结果表明,MGAN通过准确预测对比度和解剖学细节来胜过现有的gan。

Missing scans are inevitable in longitudinal studies due to either subject dropouts or failed scans. In this paper, we propose a deep learning framework to predict missing scans from acquired scans, catering to longitudinal infant studies. Prediction of infant brain MRI is challenging owing to the rapid contrast and structural changes particularly during the first year of life. We introduce a trustworthy metamorphic generative adversarial network (MGAN) for translating infant brain MRI from one time-point to another. MGAN has three key features: (i) Image translation leveraging spatial and frequency information for detail-preserving mapping; (ii) Quality-guided learning strategy that focuses attention on challenging regions. (iii) Multi-scale hybrid loss function that improves translation of tissue contrast and structural details. Experimental results indicate that MGAN outperforms existing GANs by accurately predicting both contrast and anatomical details.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源