论文标题

基于内部变化的松弛微态模型的局部规律性结果

A local regularity result for the relaxed micromorphic model based on inner variations

论文作者

Knees, Dorothee, Owczarek, Sebastian, Neff, Patrizio

论文摘要

在本文中,我们研究了线性椭圆系统的局部较高规律性,该系统与麦克斯韦类型系统相结合。规则性结果通过修改后的有限差异参数证明。这些修改后的有限差异基于内部变化与Piola型转换相结合,以保留Maxwell系统中的$ \ curl $结构。结果应用于松弛的微态模型。

In this paper we study local higher regularity properties of a linear elliptic system that is coupled with a system of Maxwell-type. The regularity result is proved by means of a modified finite difference argument. These modified finite differences are based on inner variations combined with a Piola-type transformation in order to preserve the $\curl$-structure in the Maxwell system. The result is applied to the relaxed micromorphic model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源