论文标题
基于内部变化的松弛微态模型的局部规律性结果
A local regularity result for the relaxed micromorphic model based on inner variations
论文作者
论文摘要
在本文中,我们研究了线性椭圆系统的局部较高规律性,该系统与麦克斯韦类型系统相结合。规则性结果通过修改后的有限差异参数证明。这些修改后的有限差异基于内部变化与Piola型转换相结合,以保留Maxwell系统中的$ \ curl $结构。结果应用于松弛的微态模型。
In this paper we study local higher regularity properties of a linear elliptic system that is coupled with a system of Maxwell-type. The regularity result is proved by means of a modified finite difference argument. These modified finite differences are based on inner variations combined with a Piola-type transformation in order to preserve the $\curl$-structure in the Maxwell system. The result is applied to the relaxed micromorphic model.