论文标题
通过刺激的Brillouin-Mandelstam散射探索纳米素体积中的极端热力学
Exploring extreme thermodynamics in nanoliter volumes through stimulated Brillouin-Mandelstam scattering
论文作者
论文摘要
在广泛的热力学状态下检查材料的物理特性,尤其是有毒液体的物理特性,这是一个具有挑战性的问题,因为材料必须暴露在极端情况下。可以通过光声相互作用(如布里鲁因·曼德尔斯坦散射)来访问这种温度和压力状态,从而导致折射率和声速的变化。在这里,我们在实验中证明了极端热力学状态下纳米液体积的Brillouin-Mandelstam测量。我们使用完全密封的液态光纤含有二硫化物;在这种波导中,它表现出紧密的光声限制,而高光(32.2 $ \ pm $ 0.8)1/(wm)的高光,我们能够对布里群频率转移进行空间分辨的测量。对当地布里鲁因响应的了解使我们能够在广泛的范围内独立控制温度和压力。我们观察并测量液态芯的材料特性,这是非常巨大的正压(1000 bar),大量负压(低于-300 bar),我们探索了同位和等距机制。广泛的热力学控制允许仅使用微量体积的液体将Brillouin频率移动超过40%的可调性。这项工作为未来在各种常规难以触及的条件下研究液体的研究打开了道路。
Examining the physical properties of materials - particularly of toxic liquids - under a wide range of thermodynamic states is a challenging problem due to the extreme conditions the material has to be exposed to. Such temperature and pressure regimes, which result in a change of refractive index and sound velocity can be accessed by optoacoustic interactions such as Brillouin-Mandelstam scattering. Here we experimentally demonstrate Brillouin-Mandelstam measurements of nanoliter volumes of liquids in extreme thermodynamic regimes. We use a fully-sealed liquid-core optical fiber containing carbon disulfide; within this waveguide, which exhibits tight optoacoustic confinement and a high Brillouin gain of (32.2 $\pm$ 0.8) 1/(Wm), we are able to conduct spatially resolved measurements of the Brillouin frequency shift. Knowledge of the local Brillouin response enables us to control the temperature and pressure independently over a wide range. We observe and measure the material properties of the liquid core at very large positive pressures (above 1000 bar), substantial negative pressures (below -300 bar) and we explore the isobaric and isochoric regimes. The extensive thermodynamic control allows the tunability of the Brillouin frequency shift of more than 40% using only minute volumes of liquid. This work opens the way for future studies of liquids under a variety of conventionally hard-to-reach conditions.